Energy News  
TECTONICS
Why the 'uplift of the Tibetan plateau' is a myth
by Staff Writers
Beijing, China (SPX) May 12, 2020

Tibet was assembled by a succession of Gondwanan tectonic blocks (terranes) colliding with Eurasia over a period of about 200 million years. The Kunlun-Qaidam terrane accreted in the Triassic and India was the most recent to arrive near the beginning of the Cenozoic. Each collision contributed to a complex topography that existed before the India-Eurasia collision began. The junctions between the terranes are marked by sutures (the Ayimaqin-Kunlun suture zone (AKSZ) between the Kunlun-Qaidam and the Hoh Xil-Songpan Ganzi terrane, the Jingsha suture zone (JSZ) between the Hoh Xil-Songpan Ganzi and the Qaidam terranes, the Bangong-Nujiang suture zone (BNSZ) between the Qaidam and Lhasa blocks, and the Yarlung-Tsangpo suture zone (YTSZ) between the Lhasa block and the Himalayan thrust belt). The red circles show key fossil sites that have contributed to mapping ancient topography throughout the Tibetan region.

The phrase 'the uplift of the Tibetan Plateau' is often used to link various phenomena (e.g. monsoon dynamics and biodiversity evolution) but in this review Spicer and colleagues bring together diverse lines of evidence to show that the concept of an extensive low-relief Tibet, rising in its entirety as a result of the India-Eurasia collision, is false, and the product of overly simplistic modelling.

The orogeny of the Tibetan region (Tibet, The Himalaya and the Hengduan Mountains) dates back approximately 200 million years, long before the arrival of India, and was the product of earlier Gondwanan tectonic block collisions that produced a complex of mountain chains and valleys.

The authors explain why previous stable isotope and fossil-based estimates of past surface heights were often contradictory; isotopes tend to record the height of mountain crests, while the fossils are more indicative of where sediments accumulate in valley bottoms.

The isotopic bias towards uplands means that even valleys appear as uplands at the height of the bounding mountains and so appear as an elevated plateau, a result confirmed by isotope-enabled climate modelling. By combining well-dated multiple paleoaltimetric methods a better understanding of past topography emerges.

The formation of a complex topography, and in places thickened crust, before the arrival of India suggests that the formation of the Tibetan Plateau was not only due to the India-Eurasia collision and this has important implications for the amount of crustal shortening and the size of 'greater India' before collision.

Previous work pointed to a rise of eastern Tibet and the Hengduan Mountains in the Miocene, but recent radiometric re-dating of key sites shows the region was elevated before plateau formation and the rise of the Himalaya.

Uplift began in the Eocene in large part due to extrusion of parts of Tibet beginning as early as ~ 52 Ma and extended into the early Oligocene, with landscape dissection through the expansion of river drainages taking place in the Miocene (subject to the dating being correct) as the monsoons strengthened.

The Himalaya began to rise in the Eocene, but only crested the pre-existing Gangdese mountains that already formed a 4-5 km high 'wall' along southern Tibet after the mid Miocene. North of the Gangdese, along the Bangong-Nujiang Suture south of the Tangula mountains, a deep ancient east-west aligned great central valley existed until early in the Neogene (approximately 23 million years ago) and later in its history was internally-drained.

Numerous fossil finds show lakeside sub-tropical vegetation in this valley remained below 2.3 km above sea level for much of its history, the valley floor only rising in the Neogene to form today's flat plateau through ongoing tectonic compression from India and sediment infilling.

'Uplift' in geology relates to the rise of rocks and work done against gravity, so the infilling of basins by sediment to contribute to the formation of a low-relief surface means that Tibet was never 'uplifted' as a plateau, nor was that rise solely a consequence of the India-Eurasia collision.

Research Report: "Why the 'uplift of the Tibetan Plateau' is a myth"


Related Links
Science China Press
Tectonic Science and News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECTONICS
Does accelerated subduction precede great earthquakes
Potsdam, Germany (SPX) May 01, 2020
A strange reversal of ground motion preceded two of the largest earthquakes in history. This is the result of a new study led by Jonathan Bedford of GFZ German Research Centre for Geosciences. Together with a diverse team of geoscientists from GFZ, FU Berlin, Chile, and USA, he investigated signals recorded in Chile and Japan capturing the movement of GNSS stations before the great Maule quake in 2010 (magnitude 8.8) and the Tohoku-oki earthquake in 2011 (magnitude 9.0) which led to a devastating ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
New map highlights China's export-driven CO2 emissions

COVID-19 to cause record emissions fall in 2020: IEA

Europe's banks not doing enough on climate: pressure group

DLR rethinks carbon pricing process

TECTONICS
Supercapacitor promises storage, high power and fast charging

New Princeton study takes superconductivity to the edge

KIST develops high-performance ceramic fuel cell that operates on butane gas

Researchers tackle a new opportunity to develop high-energy batteries

TECTONICS
Wave, wind and PV: The world's first floating Ocean Hybrid Platform

Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

Opportunity blows for offshore wind in China

TECTONICS
How a solar chimney can boost fire safety

CIT Leads $217 Million Financing for Hillcrest Solar Project in Ohio

Seraphim to Supply 183MW Solar Modules to the Philippines

Engineers demonstrate next-generation solar cells can take the heat, maintain efficiency

TECTONICS
Study reveals single-step strategy for recycling used nuclear fuel

Framatome and the Technical University of Munich to develop new fuel for research reactor

Are salt deposits a solution for nuclear waste disposal?

Framatome awarded to modernize research reactor at Technical University of Munich

TECTONICS
Fossil fuel-free jet propulsion with air plasmas

How new materials increase the efficiency of direct ethanol fuel cells

Water is key in catalytic conversion of methane to methanol

Researchers make key advance toward production of important biofuel

TECTONICS
Is There Life After the Oil Apocalypse?

Nigeria Faces 'Double Whammy' Challenge of COVID-19 and Plummeting Oil Revenue

With prices down and jobs leaving, US oil workers learn patience

Oil prices fall as US-China tensions offset virus hope

TECTONICS
Pandemic taking toll on weather and climate watch: UN

Potentially fatal combinations of humidity and heat are emerging across the globe

April 2020 tied for warmest on record: EU climate service

'Catastrophic' drought hits Czech Republic: minister









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.