Energy News  
ENERGY TECH
RUDN chemists made an electrode for hydrogen fuel production out of Chinese flour
by Staff Writers
Moscow, Russia (SPX) Nov 20, 2018

file image only

A RUDN chemist developed a new method of obtaining a porous carbon material on the basis of Chinese flour and water. The samples of the material exhibited high electrocatalytic activity in the course of production of hydrogen - an eco-friendly energy source. The results of the work were published in Electrochimica Acta.

Electrocatalytic production of hydrogen is a promising method of eco-friendly energy generation. In this type of reactions catalysts are electrodes made of platinum and other precious metals, and scientist are looking for a cheaper option. Around 20 alternative electrocatalysts based on different metals and carbon have been suggested in the last 5 years. Together with his Chinese colleagues, Rafael Luque, a visiting scholar at RUDN, developed a new method for obtaining the carbon material of electrocatalytic hydrogen production.

The new catalyst is based on fermented flour used for baking a specific type of Chinese bread. It is made of wheat and contains only 1% of yeast. The scientists developed a recipe for "cooking" the material: the flour mixed with distilled water should be spread out in a thin layer on a teflon surface and kept this way at 80C for one hour to fix its form. After that it should be heated in an autoclave up to 350C.

This hydrothermal treatment secures the durability and high porosity of the samples. Finally, the material should be baked in a nitrogen environment at 700C, 850C, and 1,000C. The chemists used different temperatures to find out the most optimum conditions.

The obtained nitrogen-containing porous carbon turned out to be quite durable. The authors of the work made an electrode for electrocatalytic hydrogen production from a piece of the new material and a stainless steel wire. The electrochemical experiment was conducted in acid environment.

The porous three-dimensional structure of the material gave it catalytic properties: the reagents were quick to penetrate the pores and to contact large surfaces which made electron transmission easier The electrocatalytic activity of the new material is higher than in currently known carbon-based catalysts and is comparable to metal ones. The best results were shown by the material heated to the highest temperature of 1,000C. The researchers checked its stability and found out that its electrocatalytic activity remained unchanged for at least 11 hours.

"The synthesis of nitrogen-containing porous hydrogen from fermented flour using hydrothermal treatment and pyrolysis is a cost-efficient, eco-friendly, and simple method," says Rafael Luque, Director of the Center for Molecular Design and Synthesis of Innovative Compounds for Medicine, and a visiting scholar at RUDN.

"A simple synthetic protocol could yield 44% of a high surface area porous carbon with a 3-dimensional porous structure. The activity of the material in electrocatalysis is better than that of most reported non-metal heteroatom-doped carbon catalysts and comparable to that of some metal ones. This makes flour-based carbon electrodes highly promising for a future potential implementation in industry."

Research paper


Related Links
RUDN University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Fully identified: The pathway of protons
Bochum, Germany (SPX) Nov 12, 2018
The question how certain algal enzymes accomplish the high proton transfer rate for hydrogen production had in the past been subject to speculation. Dr. Martin Winkler, Dr. Jifu Duan, Professor Eckhard Hofmann and Professor Thomas Happe from Ruhr-Universitat Bochum (RUB), together with colleagues from Freie Universitat Berlin, traced the pathway of protons all the way into the active center of [FeFe]-hydrogenases. Their findings might enable scientists to create stable chemical reproductions of su ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

How will climate change stress the power grid

ENERGY TECH
Next-gen batteries possible with new engineering approach

Traditional eutectic alloy brings new hope for high energy density metal-O2 batteries

Pressure helps to make better Li-ion batteries

From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering

ENERGY TECH
Roadmap to accelerate offshore wind industry in the United States

Denmark-based Orsted adds to its U.S. wind energy assets

Making wind farms more efficient

DNV GL successfully completed technical due diligence for 25 MW Windfloat Atlantic floating wind project

ENERGY TECH
Solar panels for yeast cell biofactories

Freedom Solar Power launches first-of-its-kind commercial solar financing vehicle in Texas

Swiss company using concrete bricks to make renewables more stable, cheaper

New records in perovskite-silicon tandem solar cells through improved light management

ENERGY TECH
Japan faces difficult energy choices

GE Hitachi and PRISM selected for US Dept of Energy's Versatile Test Reactor program

Global Nuclear Fuel's GENUSA Awarded Long-Term Fuel Supply Contract by TVO

Framatome marks opening of nuclear parts center at expanded solutions complex

ENERGY TECH
Affordable catalyst for CO2 recycling

Human excrement efficiently converted to hydrochar

Cotton-based hybrid biofuel cell could power implantable medical devices

Wartsila, LUT University and Nebraska Public Power District to develop business case for alternative fuels

ENERGY TECH
Total agrees to large increase in LNG export capacity from Papua New Guinea

Crude oil prices see vigorous recovery after recent lows despite build-up

Woman's death casts shadow over France's 'yellow vest' protests

US Senate votes against blocking Bahrain arms sale

ENERGY TECH
Resources giants ramp up calls for Australia carbon tax

Newly-elected Native American vows climate change fight

What happened in the past when the climate changed?

Perilous times for Australia wildlife amid severe drought









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.