RUDN chemists made an electrode for hydrogen fuel production out of Chinese flour by Staff Writers Moscow, Russia (SPX) Nov 20, 2018
A RUDN chemist developed a new method of obtaining a porous carbon material on the basis of Chinese flour and water. The samples of the material exhibited high electrocatalytic activity in the course of production of hydrogen - an eco-friendly energy source. The results of the work were published in Electrochimica Acta. Electrocatalytic production of hydrogen is a promising method of eco-friendly energy generation. In this type of reactions catalysts are electrodes made of platinum and other precious metals, and scientist are looking for a cheaper option. Around 20 alternative electrocatalysts based on different metals and carbon have been suggested in the last 5 years. Together with his Chinese colleagues, Rafael Luque, a visiting scholar at RUDN, developed a new method for obtaining the carbon material of electrocatalytic hydrogen production. The new catalyst is based on fermented flour used for baking a specific type of Chinese bread. It is made of wheat and contains only 1% of yeast. The scientists developed a recipe for "cooking" the material: the flour mixed with distilled water should be spread out in a thin layer on a teflon surface and kept this way at 80C for one hour to fix its form. After that it should be heated in an autoclave up to 350C. This hydrothermal treatment secures the durability and high porosity of the samples. Finally, the material should be baked in a nitrogen environment at 700C, 850C, and 1,000C. The chemists used different temperatures to find out the most optimum conditions. The obtained nitrogen-containing porous carbon turned out to be quite durable. The authors of the work made an electrode for electrocatalytic hydrogen production from a piece of the new material and a stainless steel wire. The electrochemical experiment was conducted in acid environment. The porous three-dimensional structure of the material gave it catalytic properties: the reagents were quick to penetrate the pores and to contact large surfaces which made electron transmission easier The electrocatalytic activity of the new material is higher than in currently known carbon-based catalysts and is comparable to metal ones. The best results were shown by the material heated to the highest temperature of 1,000C. The researchers checked its stability and found out that its electrocatalytic activity remained unchanged for at least 11 hours. "The synthesis of nitrogen-containing porous hydrogen from fermented flour using hydrothermal treatment and pyrolysis is a cost-efficient, eco-friendly, and simple method," says Rafael Luque, Director of the Center for Molecular Design and Synthesis of Innovative Compounds for Medicine, and a visiting scholar at RUDN. "A simple synthetic protocol could yield 44% of a high surface area porous carbon with a 3-dimensional porous structure. The activity of the material in electrocatalysis is better than that of most reported non-metal heteroatom-doped carbon catalysts and comparable to that of some metal ones. This makes flour-based carbon electrodes highly promising for a future potential implementation in industry."
Fully identified: The pathway of protons Bochum, Germany (SPX) Nov 12, 2018 The question how certain algal enzymes accomplish the high proton transfer rate for hydrogen production had in the past been subject to speculation. Dr. Martin Winkler, Dr. Jifu Duan, Professor Eckhard Hofmann and Professor Thomas Happe from Ruhr-Universitat Bochum (RUB), together with colleagues from Freie Universitat Berlin, traced the pathway of protons all the way into the active center of [FeFe]-hydrogenases. Their findings might enable scientists to create stable chemical reproductions of su ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |