Traditional eutectic alloy brings new hope for high energy density metal-O2 batteries by Staff Writers Beijing, China (SPX) Nov 15, 2018
Current lithium-ion intercalation technology, even when fully developed, is difficult to satisfy society's increasing demand of high-energy-density power sources for electric vehicles and electronics. Thus, non-aqueous alkali metal-oxygen (AM-O2: AM = Li, Na, etc.) batteries are promising to replace conventional lithium-ion battery due to their ultrahigh theoretical energy density. However, AM is extremely reactive towards air and almost all nonaqueous electrolytes, resulting in significant parasitic reactions. Furthermore, uncontrollable Li or Na metal plating/stripping, generally emerging as dendrites, easily induces cells short circuit accompanying by fire/explosion events, plaguing AM anodes towards practical applications. Therefore, to achieve a safe and stable AM-O2 cell, it is important to solve the dendrite coupled with oxidation/corrosion issues of AM anode. Recently, a research team led by ZHANG Xinbo from the Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, YAN Junmin from Jilin University, ZHANG Yu from Beihang University Beijing developed a long-life AM-O2 battery using Li-Na eutectic alloy as novel metal anode for the first time. Their findings were published in Nature Chemistry. They found that Li and Na of Li-Na alloy exhibited similar reaction activities and therefore both could be employed as active components in batteries without sacrificing the specific capacity compared with other alloys (e.g., Na-Sn alloy). In addition, alloying Li and Na improved the corrosion resistance of single metal against O2 and electrolyte and suppressed the metal dendrites growth. Importantly, in a Li-Na alloy battery, with the help of electrolyte additive, the resultant dendrite-suppressed, oxidation-resistant, and crack-free Li-Na alloy electrode endowed the newly-proposed aprotic bimetallic Li-Na alloy-O2 battery with good performances. Furthermore, by introducing efficient O2 reduction/evolution catalysts (e.g., Co/NCF), the cycling life and rate capability of Li-Na alloy-O2 battery were significantly improved. "We believe that this strategy can also be applied to other metal electrodes, such as Zn, Mg, Ca, Al and so on," said ZHANG. Meanwhile, this study provides a guidance for developing other bimetal batteries such as bimetal ion batteries and bimetal-S batteries. These batteries possess new chemistries, exhibit much better electrochemical performance than mono-metal batteries, and adopt collaborative methods to release the great potential of alkali metal anode.
Materials scientist creates fabric alternative to batteries for wearable devices Amherst MA (SPX) Nov 12, 2018 A major factor holding back development of wearable biosensors for health monitoring is the lack of a lightweight, long-lasting power supply. Now scientists at the University of Massachusetts Amherst led by materials chemist Trisha L. Andrew report that they have developed a method for making a charge-storing system that is easily integrated into clothing for "embroidering a charge-storing pattern onto any garment." As Andrew explains, "Batteries or other kinds of charge storage are still the limi ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |