![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Plainsboro NJ (SPX) Nov 13, 2018
More than 135 researchers and students from the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) presented their latest findings at the 60th annual meeting of the American Physical Society Division of Plasma Physics - a worldwide gathering focused on fundamental plasma science research and discoveries. Some 1,700 participants from more than two dozen countries joined the November 5-to-9 event in Portland, Oregon, presenting posters and talks on topics ranging from astrophysical plasmas to nanotechnology to magnetic confinement fusion experiments. Included among PPPL staffers were members of the Science Education Department who presented their work focused on workforce development and diversity, and chaired this year's Education and Public Outreach Committee that organized events ranging from a plasma science teachers day to a plasma science expo for students and the general public. Among PPPL presenters was Seth Davidovits, a 2017 graduate of the Program in Plasma Physics in the Princeton University Department of Astrophysical Sciences, who spoke as winner of the Marshall N. Rosenbluth Outstanding Doctoral Thesis Award for his dissertation on the theory and simulation of turbulence in suppressing fluids. Davidovits is now a post-doctoral research fellow at Princeton and PPPL. Invited talks by PPPL scientists covered topics ranging from the formation of stars and planets to the development of computer codes for predicting and avoiding disruptions of fusion plasmas. These talks included the following:
Developing a path to stable tokamak operation Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University, headed by Egemen Kolemen of PPPL and Princeton, have conducted real-time analyses that predict approaching disruptions and reduce instabilities while maintaining high performance. Such performance, called "high beta," is the ratio of plasma pressure - a key ingredient in fusion reactions - to the confining magnetic field. The higher the ratio, signifying the creation of relatively high pressure with relatively low magnetic fields, the better the confinement and control of the plasma and its ability to create fusion. The real-time analyses employed both physics-based and machine learning computer programs, or algorithms, that the researchers developed. The first type uses physics first-principles while the second uses data gleaned from previous experiments. The physicists used both types to control plasma experiments on the DIII-D National Fusion Facility, a DOE Office of Science user facility operated by General Atomics in San Diego, California. The physics-based analysis detected growing instabilities prior to disruptions thousands of times faster than a statistical Monte Carlo approach. The analysis showed that plasma becomes "touchy" and produces minor variations in equilibrium before an instability called a "tearing mode" that can lead to disruptions sets in. However, the physics-based algorithms could accomplish only so much. So researchers applied data-driven machine learning techniques that utilized two-to-three years of DIII-D instabilities and disruptions. The best machine learning algorithms then predicted DIII-D disruptions more than 90 percent of the time. "Taken together, the two algorithms proved that accurate prediction of instabilities could better enable the stabilization of high-performance plasmas without leading to disruptions," Kolemen said. Support for this work comes from the DOE Office of Science.
A key step toward understanding the development of heavenly bodies The study of black holes provides clues to the solution of this mystery. Illustrations of black holes typically depict them as vacuum cleaners sucking up all matter and light. In reality, clouds of dust and gas called accretion disks swirl around black holes, gradually moving closer and closer until they are trapped by the black holes and fall into them. Experiments led by researchers studying the Magnetorotational Instability (MRI) at PPPL help verify one of the proposed models for how this process works. Typical orbits, such as those that planets carve around our sun, continue for billions of years because their angular momentum - the conservation of which causes ice skaters to spin faster when pulling in their arms - prevents the planets from falling into the sun. In an accretion disk, forces such as friction can cause objects to lose their angular momentum but are insufficient to explain how quickly matter falls into the body that the disk orbits. MRI can provide an explanation. One of the experiments at PPPL simulates this process using a unique rotating water-filled device. Video is recorded of a water-filled red plastic ball as it moves away from the center of the device. A spring in the experiment connects the ball to a post to simulate magnetic forces. Position measurements of the ball indicate that the behavior of its angular momentum is consistent with the MRI predictions of developments in a real accretion disk. Researchers are now conducting experiments using spinning liquid metals to study what happens in accretion disks with actual magnetic fields present. The experiments confirm how strongly the magnetic field affects the metal and pave the way toward a clear understanding of the role the fields play in accretion disks. The combined results mark a significant step toward a more complete explanation of the development of heavenly bodies. Support for this research comes from sources including the DOE Office of Science, the National Science Foundation, and the National Nuclear Security Administration.
Twist and turn: A new understanding of the rotation of fusion plasma Such measurements, led recently by physicist Brian Grierson of PPPL on the DIII-D National Fusion Facility at General Atomics, are distinct from the commonly measured rotation of carbon and other impurities that swirl within the plasma. The distinction, which provides improved understanding of the ability of the plasma to generate its own "intrinsic rotation," has two principal aspects: + First, the main-ion rotation in the outer regions of the plasma is twice the rate of the impurity rotation. This finding is consistent with the different pressure forces and the neoclassical flows between the bulk plasma and the low-concentration carbon impurity. + Second, increasing the plasma density causes the main-ion rotation speed to evolve from a constant value across the profile, to a hollow profile, meaning that the edge of the plasma rotates faster than the center of the plasma. This difference in the shape of the rotation profile tells physicists whether the plasma is responding to a strong and large scale self-generated torque, which plays a key role in maintaining the stability of the plasma. If only the impurities were measured, physicists might incorrectly conclude that the plasma is generating a torque that causes the plasma rotation to peak, which would not be the case. It is therefore essential to measure the bulk - or main ion - plasma rotation when studying the intrinsic rotation of fusion plasmas. "Understanding how turbulence generates rotation in fusion reactors is important, because in future larger machines the ability to drive rotation with high power neutral beam injection will be relatively small," says Wayne Solomon, deputy director of the DIII-D Program. Strong intrinsic rotation will thus be key to stable plasmas. Support for this work comes from the DOE Office of Science.
No longer whistling in the dark Now scientists at PPPL and other laboratories, using data from a NASA four-satellite mission that is studying reconnection, have developed a method for identifying the source of waves that help satellites determine their location in space. The team of researchers, led by PPPL physicist Jongsoo Yoo, have correlated magnetic field measurements taken by the Magnetospheric Multiscale (MMS) mission that is orbiting at the edge of the magnetic field that surrounds the Earth. The findings identified the source of the propagation of "whistler waves" - waves with whistle-like sounds that drop from high to low and stem from reconnection - whose detection orients the satellites relative to reconnection activity that can affect the Earth. The research marks development of "a new methodology for measuring how the wave propagates in reconnection," said Yoo. The source, he said, is what are called "tail electrons" - particles with energy that is far greater than that of the bulk electrons in reconnecting field lines. "What we prove is that you couldn't have whistler waves without the active X-line" - the central reconnection region - "so whistler waves indicate that reconnection is near," Yoo said. The team now plans to investigate the development of whistler waves near the electron diffusion region, the narrow region in the magnetosphere and laboratory experiments where electrons separate from field lines before reconnection takes place. Results could prove relevant to the MMS mission, whose goals include uncovering the role that electrons play in facilitating reconnection. Support for this work comes from the DOE Office of Science, NASA, and the National Science Foundation.
Using the right magnetic fields for the job Validation of these predictions on the DIII-D National Fusion Facility enables optimization of external coils to control the plasma rotation, a major factor in plasma stability. The ripples themselves are "non-resonant," which means that they impact the momentum of plasma rotation but not the plasma's density and energy. The validation allows researchers to arrange and design coils to produce the most effective 3-D perturbations from an infinite array of possibilities, which could prove beneficial to both existing and future tokamak devices. Support for this work comes from the DOE Office of Science.
For ITER: A new way to monitor the stability of fusion plasmas New findings led by physicist Zhirui Wang of PPPL clearly distinguish between modes and offer the potential for understanding and controlling the impact of perturbations on instabilities called edge localized modes (ELMs) and for the real-time monitoring of plasma stability. "Such monitoring can serve as the key to an integrated approach for disruption prediction and avoidance in future reactors such as ITER," the international tokamak under construction in France, Wang said. Researchers first developed a model for extracting the dominant modes that stem from the response of plasma to externally applied 3-D magnetic fields. Some modes can suppress ELMs while others can lead to disruptions, so extracting the dominant type can be crucial for predicting disruptions. The physicists then validated their model with experiments on the DIII-D National Fusion Facility and on the Experimental Advanced Superconducting Tokamak (EAST) in China. In both cases, the model provided accurate descriptions of the development of modes and correctly extracted the dominant modes. Going forward, the findings can enable researchers to quantitatively identify the stability of dominant modes, and to predict disruptions or optimize RMPs for suppressing ELMs. "We can monitor the stability of the mode and predict at what point it becomes unstable," Wang said. "The model has fit the experiments quite well." Support for this work comes from the DOE Office of Science.
An effective paradigm for characterizing and forecasting tokamak disruptions The code provides a unified paradigm that automates the analysis of tokamak data to determine chains of events leading to disruptions and to forecast their evolution. The approach supports a range of methods ranging from first-principles physics analysis to empirical models to provide a flexible framework for evaluating the proximity of plasma states to a disruption event. An expanding data base of tokamak activity in the United States, Asia, and Europe continues to be collected for the code to successfully produce insights into the forecasting of disruptions. Support for this work comes from the DOE Office of Science.
![]() ![]() Inside job: A new technique to cool a fusion reactor Portland OR (SPX) Nov 06, 2018 Fusion offers the potential of near limitless energy by heating a gas trapped in a magnetic field to incredibly high temperatures where atoms are so energetic that they fuse together when they collide. But if that hot gas, called a plasma, breaks free from the magnetic field, it must be safely put back in place to avoid damaging the fusion device - this problem has been one of the great challenges of magnetically confined fusion. During these so-called disruptions, the rapid release of the energy ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |