![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Busan, South Korea (SPX) Nov 08, 2021
The desire to limit greenhouse gas emissions has increased interest in liquefied natural gas (LNG) ships, which produces considerably less emissions than those running on other fossil fuels. But LNG is expensive, making the maximization of LNG engine energy efficiencies paramount to their widespread use. At present, LNG ships lose up to 25% of their input heat in the form of exhaust gas. Recovering this heat is key to energy efficiency. In a recent study published in Energy Conversion and Management (made available online on May 31, 2021 and published in Volume 242 of the journal on August 15, 2021), a team from Korea Maritime and Ocean University, led by Dr. Yeong-Seok Choi, developed two novel heat recovery systems that can boost energy efficiency in LNG ships. Dr. Choi explains, "By increasing the energy efficiency of LNG systems, we are directly contributing to environmental protection." The research is based on what is called the 'organic Rankine cycle (ORC).' In ORC, an organic fluid is first boiled, then used to turn a turbine to generate electricity, during which it loses heat. The fluid is then condensed and reheated in a continuation of the cycle. In LNG ships, ORC also allows the preheating of cold fuel (LNG is stored at -160C) before burning. The research team developed two heat recovery systems. The first, the double stage ORC system (DSO), uses the heat from the engine exhaust gas to run two ORCs with connections to two generators. The second, the added double stage ORC system (ADSO), additionally features a third ORC; also, two of its ORCs exchange heat with each other. The team examined the workings of DSO and ADSO with combinations of different organic fluids. They then performed energy, exergy (maximum work derived from a heat exchange process), and economic analyses on the systems. They found that while DSO had better overall energy efficiency, ADSO was more suitable for cramped engine spaces. They also saw that performance depended greatly on fluid combination. Overall, the new designs achieved substantial improvements in energy efficiency. "Although our research is focused on shipping, this work can be applied to several other industries and cryogenic hydrogen research as well," says Dr. Choi. With such innovative designs, energy efficient engine systems could soon become an industrial reality for ships. Optimal working fluids and economic estimation for both double stage organic Rankine cycle and added double stage organic Rankine cycle used for waste heat recovery from liquefied natural gas fueled ships
![]() ![]() Using building science to achieve 100% renewable energy Washington DC (SPX) Nov 04, 2021 Renewable energy has the potential to decrease electricity costs, create jobs, improve environmental health, and reduce medical costs for issues related to pollution and climate change. However, renewable sources, such as wind and solar energy, vary in their availability, which impacts power grid reliability. In the Journal of Renewable and Sustainable Energy, from AIP Publishing, researchers from the U.S. Department of Energy National Renewable Energy Laboratory describe results from a techno-eco ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |