Energy News  
EPIDEMICS
AFRL adapts PJ tactics for COVID-19 monitoring
by Gina Marie Giardina for AFRL News
Wright-Patterson AFB OH (SPX) May 04, 2020

The adapted suite of medical monitoring technology called the Battlefield Assisted Trauma Distributed Observation Kit, or BATDOK, is displayed on the nurses' station counter at the Wright-Patterson Medical Center April 28. The Air Force Research Laboratory adapted this technology, originally developed for the pararescue community, for medical facilities during the COVID-19 pandemic. (U.S. Air Force photo/Wesley Farnsworth)

The Air Force Research Laboratory is leveraging tactics from the Air Force pararescue (PJ) community, employing a new tool that can monitor multiple patients' vital signs, helping to alleviate the lean doctor-to-patient ratio that many medical facilities are facing amidst COVID-19.

"One of the struggles doctors and nurses are having in highly-affected hospitals right now is similar to what PJs deal with-a high ratio of patients assigned to a low ratio of medical personnel," said Dr. Greg Burnett, Airman-Machine Integration Product Line lead in AFRL. "Add in the contagion element, and our team saw the emergent need to adapt our medical monitoring tool for widespread use so that multiple patients could be cared for remotely."

So Burnett and his team have been hard at work adapting this agile technology, originally developed for PJs to use down range, for hospitals and other health care facilities so they too can monitor the vitals of more patients.

The solution is a medical monitoring tool called the Battlefield Assisted Trauma Distributed Observation Kit, or BATDOK. The original version of this tool has been under evaluation by military medics for about four years and was deployed operationally about a year ago. Developed in AFRL's 711th Human Performance Wing, it is a smartphone-based medical information software tool that can take in sensor data for real-time health-status monitoring for multiple patients. The team has made improvements along the way to this Android application with the help of direct feedback from operators down range using the device.

This adapted version, however, removes the combat casualty care aspects of the medical monitoring tool, said Burnett, but still allows for the remote monitoring sharing of patient vitals and secured networked data dissemination. These features can help prepare doctors and nurses as they work to maintain situational awareness over multiple patients-while also working to maintain their own health and safety.

But with this newer, more streamlined vital-monitoring version of BATDOK, the AFRL team will collaborate and receive direct feedback from their new customers-healthcare providers at the Wright-Patterson Medical Center. AFRL began the first of three phases of testing with BATDOK at the base medical center in mid-April.

This first phase involves comparing data of a single patient who has agreed to have vitals monitored using both traditional methods as well as using BATDOK. The time required for each phase is unknown, but each phase will have increased patients and providers.

"Clinical practice guidelines for patients infected with COVID-19, released by the Department of Defense and the Defense Health Agency, strongly recommend continuous oxygen monitoring," said Dr. Roger Shih, WPMC Internal Medicine director.

Shih said the ability to monitor multiple patients remotely also alleviates the need for medical personnel to change out personal protective equipment (PPE) for individual patient checks.

BATDOK's tablet interface is user-friendly, Shih explained, and the software is straightforward and intuitive. It allows a single provider to monitor up to two dozen patients with real-time monitoring of their oxygen saturation and pulse.

The BATDOK team's software development co-leads, 2nd Lt. Matthew Dickinson and 2nd Lt. Corey Mack, discussed how the data moves remotely.

"Monitoring the patients remotely is done through a sensor embedded in the pulse oximeter that is placed on the patient's finger," said Dickinson.

Mack added that the sensor transmits vitals remotely to tablets or to workstations that the nurses or other healthcare providers can then monitor.

From a nursing perspective, traditional practice is for the nurses to go to a single location, a telemetry station, to observe the patient's heart rate, respiratory rate and oxygen saturation, explained Maj. Gary Webb, WPMC Medical Surgical Unit flight commander.

But with BATDOK, which is used through an app on a cell phone, Webb explained that nurses can monitor their patients wherever they are on the unit.

"The benefit of this," Webb said, "is that if an alarm is going off, the nurse can immediately look at the BATDOK app to see which alarm has sounded and address it. It saves much needed time in this situation."

All-in-all, BATDOK could allow Wright-Patterson Medical Center to rapidly scale up their ability to perform continuous oxygen monitoring for patients infected with COVID-19, while also keeping staff safer and decreasing use of PPE, said Shih.

The AFRL team, some who have family members in the hardest hit areas of this pandemic, are honored to put their skills to good use.

"It means a lot to the BATDOK team to be able to do our part in stemming the tide of the COVID-19 pandemic," explained Mack. "Working directly with those who need and use the technology we build has always been a driving factor behind the success of BATDOK. So when we heard there was a need during this crisis, we started working on potential solutions."


Related Links
Air Force Research Laboratory
Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EPIDEMICS
AFRL aircraft decontamination team ramps up battle against COVID-19
Wright-Patterson AFB CO (SPX) Apr 30, 2020
Health of air crews is paramount, and ensuring Air Force systems are safe to operate, including aircraft, is crucial. To support the global fight against COVID-19, the Air Force Research Laboratory quickly stood up an aircraft decontamination team pooling bioenvironmental, aircraft materials and medical experts from across the laboratory who've assessed a variety of aircraft decontamination support solutions. "In 2008, we didn't have good methods for decontamination, especially for aircraft ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EPIDEMICS
COVID-19 to cause record emissions fall in 2020: IEA

Europe's banks not doing enough on climate: pressure group

DLR rethinks carbon pricing process

Brussels tries to inoculate EU Green Deal against virus

EPIDEMICS
Researchers tackle a new opportunity to develop high-energy batteries

Next-generation batteries take major step toward commercial viability

Superconductivity: It's hydrogen's fault

New Princeton study takes superconductivity to the edge

EPIDEMICS
Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

EPIDEMICS
Sustainable light achieved in living plants

FSU researchers discover new structure for promising class of materials

Environment-friendly compound shows promise for solar cell use

Engineers make a promising material stable enough for use in solar cells

EPIDEMICS
Are salt deposits a solution for nuclear waste disposal?

Framatome awarded to modernize research reactor at Technical University of Munich

Supercomputers and Archimedes' law enable calculating nanobubble diffusion in nuclear fuel

Framatome signs long-term support contract for Taishan EPR operations

EPIDEMICS
Water is key in catalytic conversion of methane to methanol

Researchers make key advance toward production of important biofuel

Under pressure: New bioinspired material can 'shapeshift' to external forces

Valorizing wastewater can improve commercial viability of biomass oil production

EPIDEMICS
Crude extends rally as output cuts begin

Stock markets boosted by hopes virus worst has passed, oil dives

Energy generated on offshore wind turbine farms, and conveyed ashore as hydrogen fuel

Crude extends rally as output cuts begin

EPIDEMICS
'Catastrophic' drought hits Czech Republic: minister

US attacks China climate record on Earth Day

Fight climate change like coronavirus: UN

2019 was Europe's hottest year ever: EU









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.