Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
The First Macro-Scale Thin-Film Solid-Oxide Fuel Cell

This is a fully functional solid-oxide fuel cell membrane wafer. The structured surface of each square chip lends stability to the incredibly thin film that is used for the electrochemical membrane. Credit: Photo courtesy of Shriram Ramanathan, Harvard School of Engineering and Applied Sciences
by Staff Writers
Cambridge MA (SPX) Apr 06, 2011
Materials scientists at the Harvard School of Engineering and Applied Sciences (SEAS) and SiEnergy Systems LLC have demonstrated the first macro-scale thin-film solid-oxide fuel cell (SOFC).

While SOFCs have previously worked at the micro-scale, this is the first time any research group has overcome the structural challenges of scaling the technology up to a practical size with a proportionally higher power output.

Reported online April 3 in Nature Nanotechnology, the demonstration of this fully functional SOFC indicates the potential of electrochemical fuel cells to be a viable source of clean energy.

"The breakthrough in this work is that we have demonstrated power density comparable to what you can get with tiny membranes, but with membranes that are a factor of a hundred or so larger, demonstrating that the technology is scalable," says principal investigator Shriram Ramanathan, Associate Professor of Materials Science at SEAS.

SOFCs create electrical energy via an electrochemical reaction that takes place across an ultra-thin membrane. This 100-nanometer membrane, comprising the electrolyte and electrodes, has to be thin enough to allow ions to pass through it at a relatively low temperature (which, for ceramic fuel cells, lies in the range of 300 to 500 degrees Celsius). These low temperatures allow for a quick start-up, a more compact design, and less use of rare-earth materials.

So far, however, thin films have been successfully implemented only in micro-SOFCs, where each chip in the fuel cell wafer is about 100 microns wide. For practical applications, such as use in compact power sources, SOFCs need to be about 50 times wider.

The electrochemical membranes are so thin that creating one on that scale is roughly equivalent to making a 16-foot-wide sheet of paper. Naturally, the structural issues are significant.

"If you make a conventional thin membrane on that scale without a support structure, you can't do anything-it will just break," says co-author Bo-Kuai Lai, a postdoctoral fellow at SEAS. "You make the membrane in the lab, but you can't even take it out. It will just shatter."

With lead author Masaru Tsuchiya (Ph.D. '09), a former member of Ramanathan's lab who is now at SiEnergy, Ramanathan and Lai fortified the thin film membrane using a metallic grid that looks like nanoscale chicken wire.

The tiny metal honeycomb provides the critical structural element for the large membrane while also serving as a current collector. Ramanathan's team was able to manufacture membrane chips that were 5 mm wide, combining hundreds of these chips into palm-sized SOFC wafers.

While other researchers' earlier attempts at implementing the metallic grid showed structural success, Ramanathan's team is the first to demonstrate a fully functional SOFC on this scale. Their fuel cell's power density of 155 milliwatts per square centimeter (at 510 degrees Celsius) is comparable to the power density of micro-SOFCs.

When multiplied by the much larger active area of this new fuel cell, that power density translates into an output high enough for relevance to portable power.

Previous work in Ramanathan's lab has developed micro-SOFCs that are all-ceramic or that use methane as the fuel source instead of hydrogen. The researchers hope that future work on SOFCs will incorporate these technologies into the large-scale fuel cells, improving their affordability.

In the coming months, they will explore the design of novel nanostructured anodes for hydrogen-alternative fuels that are operable at these low temperatures and work to enhance the microstructural stability of the electrodes.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Harvard University
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


ENERGY TECH
U.S. deal boosts Argentine lithium outlook
Buenos Aires (UPI) Apr 5, 2011
Argentina boosted prospects for significant development of its lithium deposits after signing a deal with the U.S. Lithium Exploration Group two weeks after Australia's ADY Resources opened a lithium carbonate plant in the country. Argentina hopes to become a major producer and exporter of lithium and lithium compounds, which are used in batteries for consumer electronics, electric and ... read more







ENERGY TECH
Developing Commercial Hydrokinetic Energy Projects

New Zealand to slash emissions by half

US energy future hazy on Japan, environment fears

Report: China leads in low-carbon energy

ENERGY TECH
Seoul to consider oil tax cuts

US defence secretary holds talks with Saudi king

Giant Batteries For Green Power

Cuba to drill five new oil wells by 2013

ENERGY TECH
Manitoba wind farm comes online

Alstom Announces Commercial Operation Of First North American Wind Farms

Vestas unveils new offshore turbine

US hopes to resolve China wind turbine rift

ENERGY TECH
BlueChip Energy Announces Development Of 40MW Solar Farm In Florida

Industry Analyst Predicts 50 Percent Drop In Solar Project Costs

First Polymer Solar-Thermal Device Heats Home, Saves Money

SolarBridge Named 2011 Edison Best New Product Awards Gold Winner

ENERGY TECH
Brazil re-examines nuclear plant safety

Addressing The Nuclear Waste Issue

History Of Nuclear Power Needs To Be Addressed

Bulgaria, Russia halt work on nuclear power plant

ENERGY TECH
Economics, Physics Are Roadblocks For Mass-Scale Algae Biodiesel Production

Advance Toward Making Biodegradable Plastics From Waste Chicken Features

Short Rotation Energy Crops Could Help Meet UK's Renewable Energy Targets

Boeing Issues First Latin American Study On Jatropha Sustainability

ENERGY TECH
What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

China Expects To Launch Fifth Lunar Probe Chang'e-5 In 2017

ENERGY TECH
Emissions Trading Does Not Cause Pollution Hot Spots

UN climate talks begin amid Kyoto Protocol feud

Are We Really Communicating Uncertain Climate Risks?

UN talks aim to thrash out tough details on climate


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement