Energy News  
WATER WORLD
Water exists as two different liquids
by Staff Writers
Stockholm, Sweden (SPX) Jun 28, 2017


Pictured is an artist's impression of the two forms of ultra-viscous liquid water with different density. On the background is depicted the x-ray speckle pattern taken from actual data of high-density amorphous ice, which is produced by pressurizing water at very low temperatures. Credit Mattias Karlen

We normally consider liquid water as disordered with the molecules rearranging on a short time scale around some average structure. Now, however, scientists at Stockholm University have discovered two phases of the liquid with large differences in structure and density. The results are based on experimental studies using X-rays, which are now published in Proceedings of the National Academy of Science (US).

Most of us know that water is essential for our existence on planet Earth. It is less well-known that water has many strange or anomalous properties and behaves very differently from all other liquids. Some examples are the melting point, the density, the heat capacity, and all-in-all there are more than 70 properties of water that differ from most liquids. These anomalous properties of water are a prerequisite for life as we know it.

"The new remarkable property is that we find that water can exist as two different liquids at low temperatures where ice crystallization is slow", says Anders Nilsson, professor in Chemical Physics at Stockholm University.

The breakthrough in the understanding of water has been possible through a combination of studies using X-rays at Argonne National Laboratory near Chicago, where the two different structures were evidenced and at the large X-ray laboratory DESY in Hamburg where the dynamics could be investigated and demonstrated that the two phases indeed both were liquid phases. Water can thus exist as two different liquids.

"It is very exciting to be able to use X-rays to determine the relative positions between the molecules at different times", says Fivos Perakis, postdoc at Stockholm University with a background in ultrafast optical spectroscopy.

"We have in particular been able to follow the transformation of the sample at low temperatures between the two phases and demonstrated that there is diffusion as is typical for liquids".

When we think of ice it is most often as an ordered, crystalline phase that you get out of the ice box, but the most common form of ice in our planetary system is amorphous, that is disordered, and there are two forms of amorphous ice with low and high density. The two forms can interconvert and there have been speculations that they can be related to low- and high-density forms of liquid water. To experimentally investigate this hypothesis has been a great challenge that the Stockholm group has now overcome.

"I have studied amorphous ices for a long time with the goal to determine whether they can be considered a glassy state representing a frozen liquid", says Katrin Amann-Winkel, researcher in Chemical Physics at Stockholm University. "It is a dream come true to follow in such detail how a glassy state of water transforms into a viscous liquid which almost immediately transforms to a different, even more viscous, liquid of much lower density".

"The possibility to make new discoveries in water is totally fascinating and a great inspiration for my further studies", says Daniel Mariedahl, PhD student in Chemical Physics at Stockholm University. "It is particularly exciting that the new information has been provided by X-rays since the pioneer of X-ray radiation, Wolfgang Rontgen, himself speculated that water can exist in two different forms and that the interplay between them could give rise to its strange properties".

"The new results give very strong support to a picture where water at room temperature can't decide in which of the two forms it should be, high or low density, which results in local fluctuations between the two", says Lars G.M. Pettersson, professor in Theoretical Chemical Physics at Stockholm University. "In a nutshell: Water is not a complicated liquid, but two simple liquids with a complicated relationship."

These new results not only create an overall understanding of water at different temperatures and pressures, but also how water is affected by salts and biomolecules important for life. In addition, the increased understanding of water can lead to new insights on how to purify and desalinate water in the future. This will be one of the main challenges to humanity in view of the global climate change.

Research Report

WATER WORLD
Water exists in two distinct liquid phases
Washington (UPI) Jun 26, 2017
Water differs from other liquids in a variety of ways, many of which make it essential for life. New research has identified another unusual property: water exists in two distinct liquid phases. "Water can exist as two different liquids at low temperatures where ice crystallization is slow," Anders Nilsson, a professor of physical chemistry at Stockholm University, said in a news releas ... read more

Related Links
Stockholm University
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Fighting global warming and climate change requires a broad energy portfolio

Low-carbon trajectory is the only option, European leaders say

Divestment streak continues for British energy company Centrica

New ultrathin material for splitting water could make hydrogen production cheaper

WATER WORLD
Deceleration of runaway electrons paves the way for fusion power

Illuminating a better way to calculate excitation energy

Inexpensive organic material gives safe batteries a longer life

Nickel for thought: Compound shows potential for high-temperature superconductivity

WATER WORLD
Thrive Renewables delivers mezzanine funded wind farms in Scotland

It's a breeze: How to harness the power of the wind

ADB: Asia-Pacific growth tied to renewables

GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

WATER WORLD
Air pollution casts shadow over solar energy production

SOVENTIX and Gentec EPC sign a joint venture agreement to develop solar hybrid projects across Nigeria

Pacific island nations get renewable energy support

ABB microgrid to power Aruba and support transition to renewable energy

WATER WORLD
UK nuclear plant to cost consumers billions more

AREVA obtains transport license for its new cask in France and Belgium

NWMO to Focus Field Studies on Fewer Communities

Toshiba delays results again citing US nuclear unit

WATER WORLD
Regulating the indirect land use carbon emissions imposes high hidden costs on fuel

New catalyst paves way for carbon neutral fuel

Corn better used as food than biofuel

Discovery could lead to sustainable ethanol made from carbon dioxide

WATER WORLD
No problem, Russian oil company says after cyberattack

Gazprom reviews role in Turkish gas business

New gas coming from revitalized North Sea region

Africa-focused Tullow Oil cuts spending guidance by 20 percent

WATER WORLD
US mayors bypass Trump to back Paris climate goals

How the climate can rapidly change at tipping points

Climate change more important than partisan politics: Schwarzenegger

NASA-MIT Study Evaluates Efficiency of Oceans as Heat Sink, Atmospheric Gases Sponge









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.