![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Sydney, Australia (SPX) Jun 08, 2017
UNSW Sydney chemists have invented a new, cheap catalyst for splitting water with an electrical current to efficiently produce clean hydrogen fuel. The technology is based on the creation of ultrathin slices of porous metal-organic complex materials coated onto a foam electrode, which the researchers have unexpectedly shown is highly conductive of electricity and active for splitting water. "Splitting water usually requires two different catalysts, but our catalyst can drive both of the reactions required to separate water into its two constituents, oxygen and hydrogen," says study leader Associate Professor Chuan Zhao. "Our fabrication method is simple and universal, so we can adapt it to produce ultrathin nanosheet arrays of a variety of these materials, called metal-organic frameworks. "Compared to other water-splitting electro-catalysts reported to date, our catalyst is also among the most efficient," he says. The UNSW research by Zhao, Dr Sheng Chen and Dr Jingjing Duan is published in the journal Nature Communications. Hydrogen is a very good carrier for renewable energy because it is abundant, generates zero emissions, and is much easier to store than other energy sources, like solar or wind energy. But the cost of producing it by using electricity to split water is high, because the most efficient catalysts developed so far are often made with precious metals, like platinum, ruthenium and iridium. The catalysts developed at UNSW are made of abundant, non-precious metals like nickel, iron and copper. They belong to a family of versatile porous materials called metal organic frameworks, which have a wide variety of other potential applications. Until now, metal-organic frameworks were considered poor conductors and not very useful for electrochemical reactions. Conventionally, they are made in the form of bulk powders, with their catalytic sites deeply embedded inside the pores of the material, where it is difficult for the water to reach. By creating nanometre-thick arrays of metal-organic frameworks, Zhao's team was able to expose the pores and increase the surface area for electrical contact with the water. "With nanoengineering, we made a unique metal-organic framework structure that solves the big problems of conductivity, and access to active sites," says Zhao. "It is ground-breaking. We were able to demonstrate that metal-organic frameworks can be highly conductive, challenging the common concept of these materials as inert electro-catalysts." Metal-organic frameworks have potential for a large range of applications, including fuel storage, drug delivery, and carbon capture. The UNSW team's demonstration that they can also be highly conductive introduces a host of new applications for this class of material beyond electro-catalysis.
![]() New York (AFP) June 2, 2017 State governors, city mayors and powerful companies united Friday in defiance of President Donald Trump's pledge to take the United States out of the Paris climate accord, pledging to meet greenhouse gas emission targets regardless. A majority of Americans in every state, or 69 percent of US voters, believe the United States should participate in the agreement, according to a recent opinion ... read more Related Links University of New South Wales
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |