Energy News  
ENERGY TECH
Upgraded code reveals a source of damaging fusion disruptions
by Staff Writers
Princeton NJ (SPX) Nov 15, 2021

Destructive magnetic perturbations create a complex 3-D structure of magnetic field lines that randomly wander inside the tokamak. The red line shows the 3-D trajectory of an example field line, and each field line can have a significantly different trajectory. The colors of the cross-section represent the length of field line trajectory through each area, from short (black) to long (yellow) lengths.

Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and Los Alamos National Laboratory have uncovered a key process behind a major challenge called thermal quenches, the rapid heat loss in hot plasmas that can occur in doughnut-shaped tokamak fusion devices.

Such quenches are sudden drops of electron heat in the plasma that fuels fusion reactions, drops that can create damaging disruptions inside the tokamak. Understanding the physics behind these quenches, caused by powerful perturbations in the magnetic fields that confine the plasma in tokamaks, could lead to methods to mitigate or prevent them.

Researchers have now traced a comprehensive mechanism for thermal quenches to turbulent particle transport. Using the laboratory's Gyrokinetic Tokamak Simulation (GTS) code, the physicists explored how the hot plasma, which is composed of free electrons and atomic nuclei, or ions, generates the electric field and the turbulent particle transport at the outset of quenches.

The GTS code was originally developed at PPPL to simulate turbulence and transport physics in the hot core plasmas which are confined by magnetic fields in tokamaks. Recently, the GTS code has been extended to study more complex plasmas and magnetic fields, such as destructive magnetic perturbations that break the magnetic field cage and create chaotic 3-D magnetic field lines.

The introduction of novel numerical algorithms and the acceleration of graphics processing units made this powerful new capability possible. This upgrade enables the consistent simulation of plasma transport during thermal quenches at lower computational costs, yielding important new insights into disruption physics.

The GTS code traced the plasma transport mechanism to the evolution of a self-generated electric field in 3-D chaotic magnetic fields, whose complexity had previously made the quenching mechanisms difficult to understand. The improved code unraveled the controversy and laid bare the physics behind the mechanism.

The self-generated field mixes up the plasma, causing high-energy electrons to escape from the core and fly toward the wall. This enhanced heat transport produces a rapid and continuous drop in electron temperature, leading to the thermal quench.

From the simulation results and comparison to experimental observations, researchers found that this novel mechanism could be a major contributor to the abrupt quenches. The researchers have proposed an analytic model of plasma transport that provides new physical insights for understanding the complex topology of 3-D magnetic field lines. These breakthrough discoveries could lead to new steps to battle damaging disruptions.


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Meter-scale plasma waveguides push the particle accelerator envelope
College Park MD (SPX) Nov 15, 2021
Charged particle accelerators have been a central tool of basic physics research for almost a hundred years, perhaps most famously as "atom smashers" for understanding the elementary constituents of the universe. As accelerators have progressed to ever higher energies to probe ever smaller constituents, they have grown to enormous size: the Large Hadron Collider is a remarkable 27 kilometers in circumference. Recently, however, researchers at the University of Maryland have used intense lasers and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
COP26 strikes hard-fought deal but UN says 'not enough'

World needs trillions to face climate threat: draft UN report

COP26 draft urges boost to emissions cutting goals by 2022

Countries far apart as climate talks enter final week

ENERGY TECH
Calling all "fusioneers"! New US fusion energy website launches

Feeling the heat: Fusion reactors used to test spacecraft heat shields

Visualizing the microscopic world of fast ions in fusion devices

Neutral particles a drag on disruptive plasma blobs

ENERGY TECH
Green hydrogen from expanded wind power in China

Scientists bring efficiency to expanding offshore wind energy

From oil to renewables, winds of change blow on Scottish islands

US unveils plans for seven major offshore wind farms

ENERGY TECH
Major cities could be close to self-sustaining through fully integrated solar

Zara founder Ortega enters renewable energy sector

New nanocomposite improves solar evaporation for water purification

NTU Singapore scientists invent 'smart' window material that blocks rays without blocking views

ENERGY TECH
Options for the Diablo Canyon nuclear plant

Rolls-Royce launches nuclear reactor business

Greenland passes law banning uranium mining

Macron says France to build more nuclear reactors

ENERGY TECH
Bioenergy crops better for biodiversity than food-based agriculture

Recycling CO2 to fuel a carbon-neutral future

Converting methane to methanol - with and without water

Making aircraft fuel from sunlight and air

ENERGY TECH
Governments risk 'trillions' in fossil fuel climate litigation

Iran say won't sign climate deal while under sanctions

Fossil fuels and finance take centre stage in COP26 final day

Gulf states in first joint naval exercises with Israel

ENERGY TECH
Pacific Ocean, not ice sheet, shifted West Coast storms south

'No Drama Sharma': UK's low-key COP chief

US-China pact welcomed at climate talks

Farmers in Iran's Isfahan protest drought in dried-up river









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.