Energy News  
TIME AND SPACE
Under pressure, black holes feast
by Staff Writers
New Haven CT (SPX) May 28, 2020

Side-by-side images of "jellyfish" galaxies. On the left is galaxy ESO 137-001 from a combination of images from NASA Hubble Space Telescope and Chandra X-ray Observatory. On the right is a galaxy falling into the RomulusC galaxy cluster simulation.

A new, Yale-led study shows that some supermassive black holes actually thrive under pressure.

It has been known for some time that when distant galaxies --and the supermassive black holes within their cores - aggregate into clusters, these clusters create a volatile, highly pressurized environment. Individual galaxies falling into clusters are often deformed during the process and begin to resemble cosmic jellyfish.

Curiously, the intense pressure squelches the creation of new stars in these galaxies and eventually shuts off normal black hole feeding on nearby interstellar gas. But not before allowing the black holes one final feast of gas clouds and the occasional star.

The researchers also suggested this rapid feeding might be responsible for the eventual lack of new stars in those environments. The research team said "outflows" of gas, driven by the black holes, might be shutting off star formation.

"We know that the feeding habits of central supermassive black holes and the formation of stars in the host galaxy are intricately related. Understanding precisely how they operate in different larger-scale environments has been a challenge. Our study has revealed this complex interplay," said astrophysicist Priyamvada Natarajan, whose team initiated the research. Natarajan is a professor of astronomy and physics in Yale's Faculty of Arts and Sciences.

The study is published in the Astrophysical Journal Letters. The first author is Angelo Ricarte, a former member of Natarajan's lab now at Harvard, who started this work as a Yale doctoral student. Co-authors are Yale Center for Astronomy and Astrophysics Prize postdoctoral associate Michael Tremmel and Thomas Quinn of the University of Washington.

The new study adds to a significant body of work from Natarajan's research group regarding how supermassive black holes form, grow, and interact with their host galaxies in various cosmic environments.

The researchers conducted sophisticated simulations of black holes within galaxy clusters using RomulusC, a cosmological simulation that Tremmel, Quinn and others developed.

Ricarte developed new tools for extracting information from RomulusC. While analyzing black hole activity in the cluster simulation, he said, he noticed "something weird happening once their host galaxies stopped forming stars. Surprisingly, I often spotted a peak in black hole activity at the same time that the galaxy died."

That "peak" would be the black hole's big, final feast, under pressure.

Tremmel said that "RomulusC is unique because of its exquisite resolution and the detailed way in which it treats supermassive black holes and their environments, allowing us to track their growth."


Related Links
Yale University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Why clouds form near black holes
Washington DC (SPX) May 15, 2020
Once you leave the majestic skies of Earth, the word "cloud" no longer means a white fluffy-looking structure that produces rain. Instead, clouds in the greater universe are clumpy areas of greater density than their surroundings. Space telescopes have observed these cosmic clouds in the vicinity of supermassive black holes, those mysterious dense objects from which no light can escape, with masses equivalent to more than 100,000 Suns. There is a supermassive black hole in the center of nearly eve ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
World needs 'green recovery', health pros tell G20 leaders

Global CO2 emissions to drop 4-7% in 2020, but will it matter

New map highlights China's export-driven CO2 emissions

COVID-19 to cause record emissions fall in 2020: IEA

TIME AND SPACE
Surprise link found to edge turbulence in fusion plasma

Next-gen laser facilities look to usher in new era of relativistic plasmas research

Discovery about the edge of fusion plasma could help realize fusion power

Skoltech scientists show a promising solid electrolyte is 'hydrophobic'

TIME AND SPACE
US wind plants show relatively low levels of performance decline as they age

Wave, wind and PV: The world's first floating Ocean Hybrid Platform

Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

TIME AND SPACE
Solar energy farms could offer second life for electric vehicle batteries

NUS researchers create novel device that harnesses shadows to generate electricity

REC Solar and DHX-Dependable Hawaiian Express complete solar microgrid project

Untangling a key step in photosynthetic oxygen production

TIME AND SPACE
General Atomics integrates nuclear division into Electromagnetics Systems Group

Framatome to provide engineering services to EDF in the United Kingdom

EDF submits plans for controversial UK nuclear plant

US awards two projects utilizing the BWRX-300 Small Modular Reactor Design

TIME AND SPACE
Bricks made from plastic, organic waste

Chemical recycling makes useful product from waste bioplastic

Researchers turn algae leftovers into renewable products with flare

Can renewable energy really replace fossil fuels?

TIME AND SPACE
Venezuela says Iranian tankers will get military escort

Foreigners evacuated from Iraq gas field after protests

Russia sent jets to Libya to back mercenaries, says US

Iraqi minister seeks Gulf funds to stave off fiscal collapse

TIME AND SPACE
Modern sea-level rise linked to human activities, Rutgers research reaffirms

Czech Republic drought visible from space

Potentially fatal combinations of humidity and heat are emerging across the globe

Pandemic taking toll on weather and climate watch: UN









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.