Energy News  
ENERGY TECH
Next-gen laser facilities look to usher in new era of relativistic plasmas research
by Staff Writers
Washington DC (SPX) May 27, 2020

Quantum electrodynamics phenomena in plasmas.

The subject of the 2018 Nobel Prize in physics, chirped pulse amplification is a technique that increases the strength of laser pulses in many of today's highest-powered research lasers. As next-generation laser facilities look to push beam power up to 10 petawatts, physicists expect a new era for studying plasmas, whose behavior is affected by features typically seen in black holes and the winds from pulsars.

Researchers released a study taking stock of what upcoming high-power laser capabilities are poised to teach us about relativistic plasmas subjected to strong-field quantum electrodynamics (QED) processes. In addition, the proposed new study designs for further exploring these new phenomena.

Appearing in Physics of Plasmas, from AIP Publishing, the article introduces the physics of relativistic plasma in supercritical fields, discusses the current state of the field and provides an overview of recent developments. It also highlights open questions and topics that are likely to dominate the attention of people working in the field over the next several years.

Strong-field QED is a lesser-studied corner of the standard model of particle physics that has not been explored at big collider facilities, such as SLAC National Accelerator Laboratory or CERN, the European Organization for Nuclear Research, due to the lack of strong electromagnetic fields in accelerator settings. With high-intensity lasers, researchers can use strong fields, which have been observed in phenomena such as gamma ray emission and electron-positron pair production.

The group explores how the findings could potentially lead to advances in studies of fundamental physics and in the development of high-energy ion, electron, positron and photon sources. Such findings would be crucial for expanding on many types of scanning technology present today, ranging from materials science studies to medical radiotherapy to next-generation radiography for homeland security and industry.

The QED processes will result in dramatically new plasma physics phenomena, such as the generation of dense electron-positron pair plasma from near vacuum, complete laser energy absorption by QED processes, or the stopping of an ultrarelativistic electron beam, which could penetrate a centimeter of lead by a hair's breadth of laser light.

"What kind of new technology these new plasma physics phenomena might translate is largely unknown, especially because the field of QED plasmas itself is a kind of uncharted territory in physics," author Peng Zhang said. "At the current stage, even adequate theoretical understanding is significantly lacking."

The group hopes the paper will help bring the attention of more researchers to the exciting new fields of QED plasmas.

Research Report: "Relativistic plasma physics in supercritical fields"


Related Links
American Institute Of Physics
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Scientists explore the power of radio waves to help control fusion reactions
Plainsboro NJ (SPX) Apr 29, 2020
A key challenge to capturing and controlling fusion energy on Earth is maintaining the stability of plasma - the electrically charged gas that fuels fusion reactions - and keeping it millions of degrees hot to launch and maintain fusion reactions. This challenge requires controlling magnetic islands, bubble-like structures that form in the plasma in doughnut-shaped tokamak fusion facilities. These islands can grow, cool the plasma and trigger disruptions - the sudden release of energy stored in th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
World needs 'green recovery', health pros tell G20 leaders

Global CO2 emissions to drop 4-7% in 2020, but will it matter

New map highlights China's export-driven CO2 emissions

COVID-19 to cause record emissions fall in 2020: IEA

ENERGY TECH
Skoltech scientists show a promising solid electrolyte is 'hydrophobic'

Electrons break rotational symmetry in exotic low-temp superconductor

Surrey unveils fast-charging super-capacitor technology

Coordination polymer glass provides solid support for hydrogen fuel cells

ENERGY TECH
US wind plants show relatively low levels of performance decline as they age

Wave, wind and PV: The world's first floating Ocean Hybrid Platform

Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

ENERGY TECH
Untangling a key step in photosynthetic oxygen production

New 3D-printed system speeds up solar cell testing from hours to minutes

NUS researchers create novel device that harnesses shadows to generate electricity

Next-generation solar cells pass strict international tests

ENERGY TECH
General Atomics integrates nuclear division into Electromagnetics Systems Group

US awards two projects utilizing the BWRX-300 Small Modular Reactor Design

Study reveals single-step strategy for recycling used nuclear fuel

Framatome and the Technical University of Munich to develop new fuel for research reactor

ENERGY TECH
Chemical recycling makes useful product from waste bioplastic

Researchers turn algae leftovers into renewable products with flare

Can renewable energy really replace fossil fuels?

Solve invasive seaweed problem by turning it into biofuels and fertilisers

ENERGY TECH
Iraqi minister seeks Gulf funds to stave off fiscal collapse

The trader who called the 2020 oil crisis

Can oilfield water safely be reused for irrigation in California

Saudi attacker on US base had longstanding al-Qaeda ties: US

ENERGY TECH
Modern sea-level rise linked to human activities, Rutgers research reaffirms

Czech Republic drought visible from space

Potentially fatal combinations of humidity and heat are emerging across the globe

Pandemic taking toll on weather and climate watch: UN









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.