![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Hamburg, Germany (SPX) Nov 13, 2020
When you cool down liquid water, it crystallizes into ice. Consider a bucket filled with water, for example. When the water is liquid, the water molecules can be anywhere inside the bucket. In this sense, every point inside the bucket is equivalent. Once the water freezes, however, the water molecules occupy well-defined positions in space. Thus, not every point inside the bucket is equivalent anymore. Physicists refer to this phenomenon as spontaneous symmetry breaking. Here the translation symmetry in space is broken by the formation of the crystal. Is it possible for crystals to form in time instead of space? While it appears like an outlandish notion, it turns out that a time crystal may emerge when a physical system of many interacting particles is periodically driven. The defining feature of a time crystal is that a macroscopic observable, such as the electric current in a solid, oscillates at a frequency that is smaller than the driving frequency. So far, time crystals have been realized in artificial model systems. But now, what about real systems? A piece of a high-temperature superconductor is such a real system - you can buy it online. It is not much to look at, with its brownish, rusty color. Yet its frictionless electron flow at temperatures up to 100 K ( 173C) constitutes one of the most spectacular phenomena of material science. "We propose to turn a high-temperature superconductor into a time crystal by shining a laser on it", explains first author Guido Homann from the Department of Physics at Universitat Hamburg. The frequency of the laser needs to be tuned to the sum resonance of two fundamental excitations of the material. One of these excitations is the elusive Higgs mode, which is conceptually related to the Higgs boson in particle physics. The other excitation is the plasma mode, corresponding to an oscillatory motion of electron pairs, which are responsible for superconductivity. Co-author Dr. Jayson Cosme from Universitat Hamburg, now University of the Philippines, adds that "the creation of a time crystal in a high-temperature superconductor is an important step because it establishes this genuine dynamical phase of matter in the domain of solid-state physics". Controlling solids by light is not only fascinating from a scientific perspective but also technologically relevant, as emphasized by group leader Prof. Dr. Ludwig Mathey. "The ultimate goal of our research is to design quantum materials on demand." With their novel proposal, this fascinating endeavor is now advanced towards dynamical states of matter, rather than the usual static states of matter, by laying out a strategy to design time crystals instead of regular crystals, which opens up a new and surprising direction of material design.
Research Report: Higgs time crystal in a high-Tc superconductor
![]() ![]() Power-free system harnesses evaporation to keep items cool Boston MA (SPX) Nov 12, 2020 Camels have evolved a seemingly counterintuitive approach to keeping cool while conserving water in a scorching desert environment: They have a thick coat of insulating fur. Applying essentially the same approach, researchers at MIT have now developed a system that could help keep things like pharmaceuticals or fresh produce cool in hot environments, without the need for a power supply. Most people wouldn't think of wearing a camel-hair coat on a hot summer's day, but in fact many desert-dwelling ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |