![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Toki, Japan (SPX) Sep 29, 2022
In fusion power generation, it is essential that the high-energy particles generated by a fusion reaction in hot plasma heat it to sustain further fusion reactions. The key to this self-heating of the plasma is whether it can be heated by waves created by the high-energy particles. A research group led by Professor Katsumi Ida, Assistant Professors Tatsuya Kobayashi and Mikiro Yoshinuma of the National Institute for Fusion Science and Professor Yuto Kato of Tohoku University, has measured the time variation of the plasma velocity profile in the Large Helical Device (LHD) at the National Institute for Fusion Science and found that electromagnetic waves produced by high-energy particles carry heat through a process called Landau damping. This is the first observation in the world of this process. A paper summarizing the results of this research was published in Communications Physics on Sep. 28. Until now there has been no method to directly measure the plasma heating process caused by electromagnetic waves generated inside the plasma, so it has not been known whether this process actually exists. In order to capture it, Professor Katsumi Ida and his research group have worked to develop a new measurement system. In order to directly measure the heating process, it is necessary to determine the time variation of the velocity distribution, which indicates which velocity particles are present and in what proportion. To this end, they injected high-speed atoms into the plasma and used a method to measure the velocity distribution of plasma particles at high speed from the wavelength distribution of light emitted from the plasma (high-speed charge exchange spectroscopy). Professor Ida and his colleagues took on the challenge of ultrahigh-speed measurement, which had been considered difficult, and succeeded in measuring the time variation of the velocity distribution of plasma particles at an ultrahigh-speed of 10 kHz (10,000 times per second). In the LHD, experiments are being conducted to investigate plasma self-heating, using a high -speed particle beam, that simulates high-energy particles from nuclear fusion reactions. In this experiment to simulate self-heating, a newly developed measurement system was used to measure in detail the time variation of the velocity distribution of plasma particles. As a result, it was discovered for the first time in the world that the plasma is heated due to the slowing down of the high-speed particle beam and the distortion of the velocity profile of the plasma particles caused by the generation of electromagnetic waves inside the plasma. The reason for this distortion of the velocity profile was found to be that the energy of the high-speed particle beam was transferred to the electromagnetic wave through a process called Landau damping, and the energy of the electromagnetic wave was transferred to the plasma particles. In other words we observed that the electromagnetic waves carried the energy of the high-speed particle beam to the plasma and heated it. Professor Ida said, "For self-heating of plasma in fusion power generation, it is not enough for high-energy particles to collide with plasma ones and heat them, so heating by other processes is also necessary. This result, which shows that electromagnetic waves generated inside the plasma can heat it, provides important knowledge for fusion research. Furthermore, it will contribute to the study of the Earth's magnetosphere, where particle acceleration occurs by a similar process, and will promote future interdisciplinary research."
Research Report:"Direct observation of mass-dependent collisionless energy transfer via Landau and transit-time damping"
![]() ![]() MIT students contribute to success of historic fusion experiment Boston MA (SPX) Sep 07, 2022 For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition in a laboratory, a grand challenge of the 21st century. The High-Energy-Density Physics (HEDP) group at MIT's Plasma Science and Fusion Center has focused on an approach called inertial confinement fusion (ICF), which uses lasers to implode a pellet of fuel in a quest for ignition. This group, including nine former and current MIT students, was crucial to an historic ICF ignition experimen ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |