Energy News  
ENERGY TECH
Stanford researchers make rechargeable batteries that store six times more charge
by Andrew Myers for Stanford News
Stanford CA (SPX) Aug 26, 2021

An LED light is powered by a prototype rechargeable battery using the sodium-chlorine chemistry developed recently by Stanford researchers. (Image credit: Guanzhou Zhu)

An international team of researchers led by Stanford University have developed rechargeable batteries that can store up to six times more charge than ones that are currently commercially available.

The advance, detailed in a new paper published Aug. 25 in the journal Nature, could accelerate the use of rechargeable batteries and puts battery researchers one step closer toward achieving two top stated goals of their field: creating a high-performance rechargeable battery that could enable cellphones to be charged only once a week instead of daily and electric vehicles that can travel six times farther without a recharge.

The new so-called alkali metal-chlorine batteries, developed by a team of researchers led by Stanford chemistry professor Hongjie Dai and doctoral candidate Guanzhou Zhu, relies on the back-and-forth chemical conversion of sodium chloride or lithium chloride to chlorine. They created a working prototype sodium metal-chlorine coin battery as a proof of concept.

When electrons travel from one side of a rechargeable battery to the other, recharging reverts the chemistry back to its original state to await another use. Non-rechargeable batteries have no such luck. Once drained, their chemistry cannot be restored.

"A rechargeable battery is a bit like a rocking chair. It tips in one direction, but then rocks back when you add electricity," Dai explained. "What we have here is a high-rocking rocking chair."

Serendipitous discovery
The reason no one had yet created a high-performance rechargeable sodium-chlorine or lithium-chlorine battery is that chlorine is too reactive and challenging to convert back to a chloride with high efficiency. In the few cases where others were able to achieve a certain degree of rechargeability, the battery performance proved poor.

In fact, Dai and Zhu did not set out to create a rechargeable sodium and lithium-chlorine battery at all, but merely to improve their existing battery technologies using thionyl chloride. This chemical is one of the main ingredients of lithium-thionyl chloride batteries, which are a popular type of single-use battery first invented in the 1970s.

But in one of their early experiments involving chlorine and sodium chloride, the Stanford researchers noticed that the conversion of one chemical to another had somehow stabilized, resulting in some rechargeability. "I didn't think it was possible," Dai said. "It took us about at least a year to really realize what was going on."

Over the next several years, the team elucidated the reversible chemistries and sought ways to make it more efficient by experimenting with many different materials for the battery's positive electrode. The big breakthrough came when they formed the electrode using an advanced porous carbon material from collaborators Professor Yuan-Yao Li and his student Hung-Chun Tai from the National Chung Cheng University of Taiwan. The carbon material has a nanosphere structure filled with many ultra-tiny pores. In practice, these hollow spheres act like a sponge, sopping up copious amounts of otherwise touchy chlorine molecules and storing them for later conversion to salt inside the micropores.

"The chlorine molecule is being trapped and protected in the tiny pores of the carbon nanospheres when the battery is charged," Zhu explained. "Then, when the battery needs to be drained or discharged, we can discharge the battery and convert chlorine to make NaCl - table salt - and repeat this process over many cycles. We can cycle up to 200 times currently and there's still room for improvement."

The result is a step toward the brass ring of battery design - high energy density. The researchers have so far achieved 1,200 milliamp hours per gram of positive electrode material, while the capacity of commercial lithium-ion battery today is up to 200 milliamp hours per gram. "Ours has at least six times higher capacity," Zhu said.

The researchers envision their batteries one day being used in situations where frequent recharging is not practical or desirable, such as in satellites or remote sensors. Many otherwise usable satellites are now floating in orbit, obsolete due to their dead batteries. Future satellites equipped with long-lived rechargeable batteries could be fitted with solar chargers, extending their usefulness many times over.

For now though, the working prototype they've developed might still be suitable for use in small everyday electronics like hearing aids or remote controls. For consumer electronics or electrical vehicles, much more work remains to engineer the battery structure, increase the energy density, scale up the batteries and increase the number of cycles.

Research Report: "Rechargeable Na/Cl2 and Li/Cl2 batteries"


Related Links
Stanford University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
An innovative process which prevents irreversible energy loss in batteries
Seoul, South Korea (SPX) Aug 25, 2021
When its batteries are fully charged, an electronic device will normally indicate that they are at 100% capacity. However, this value only represents 70-90% of the theoretical energy density that can be stored in the batteries, owing to the permanent loss of Li ions that occurs during the initial charge in the stabilization (formation) stage of battery production. By preventing this initial loss of Li ions, the mileage of electric vehicles (EVs) and usage time of smartphones can be drastically increased ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Australia rejects climate targets despite damning UN report

China signals steady course after UN climate warning

US says cannot delay 'ambitious' action to protect climate

Areas of Iraqi province lose power after attack on pylons

ENERGY TECH
An innovative process which prevents irreversible energy loss in batteries

Thermoelectric ink turns car exhaust pipes into power generators

Stanford researchers make rechargeable batteries that store six times more charge

Digging for newer, cleaner solutions: WVU-led team tapped to explore geothermal energy

ENERGY TECH
How do wind turbines respond to winds, ground motion during earthquakes?

For golden eagles, habitat loss is main threat from wind farms

Wind turbines can be clustered while avoiding turbulent wakes of their neighbors

Shell, France's EDF to build US offshore windfarm

ENERGY TECH
New grant for photovoltaics research center will support net zero push

University of Surrey awarded new funding for perovskite solar cell research

Perovskite solar cells: Interfacial loss mechanisms revealed

The dream artificial photosynthesis technology ventures from the laboratory

ENERGY TECH
Framatome and BBF achieve testing milestone for medical sterilization transport system

Framatome acquires nuclear power systems division of RCM Technologies Canada Corp

Framatome's steam generator replacement expertise supports long-term operations in Canada

China nuclear reactor shut down for maintenance after damage

ENERGY TECH
Turning hazelnut shells into potential renewable energy source

Biofuel potential from wastewater ponds

NASA awards $750,000 in competition to convert carbon dioxide into sugar

Maersk orders eight carbon-neutral container ships

ENERGY TECH
Iran Foreign Minister heads to Iraq regional summit

Cyprus monitoring Syria oil spill in Mediterranean

A new catalyst to generate hydrogen from ammonia at low temperatures

Leaded petrol runs out of gas, century after first warnings: UN

ENERGY TECH
US climate envoy Kerry to visit China, Japan ahead of summit

Extinction Rebellion protests in London's financial centre

Drought makes its home on the range

UN hot on the trail of temperature records









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.