Energy News  
ENERGY TECH
Sodium- and potassium-based batteries hold promise for cheap energy storage
by Staff Writers
Atlanta GA (SPX) Jun 20, 2018

Matthew Boebinger, a graduate student at Georgia Tech, observing video footage of a chemical reaction between sodium and iron sulfide.

From electric cars that travel hundreds of miles on a single charge to chainsaws as mighty as gas-powered versions, new products hit the market each year that take advantage of recent advances in battery technology.

But that growth has led to concerns that the world's supply of lithium, the metal at the heart of many of the new rechargeable batteries, may eventually be depleted.

Now researchers at the Georgia Institute of Technology have found new evidence suggesting that batteries based on sodium and potassium hold promise as a potential alternative to lithium-based batteries.

"One of the biggest obstacles for sodium- and potassium-ion batteries has been that they tend to decay and degrade faster and hold less energy than alternatives," said Matthew McDowell, an assistant professor in the George W. Woodruff School of Mechanical Engineering and the School of Materials Science and Engineering.

"But we've found that's not always the case," he added.

For the study, which was published June 19 in the journal Joule and was sponsored by the National Science Foundation and the U.S. Department of Energy, the research team looked at how three different ions - lithium, sodium, and potassium - reacted with particles of iron sulfide, also called pyrite and fool's gold.

As batteries charge and discharge, ions are constantly reacting with and penetrating the particles that make up the battery electrode. This reaction process causes large volume changes in the electrode's particles, often breaking them up into small pieces. Because sodium and potassium ions are larger than lithium, it's traditionally been thought that they cause more significant degradation when reacting with particles.

In their experiments, the reactions that occur inside a battery were directly observed inside an electron microscope, with the iron sulfide particles playing the role of a battery electrode. The researchers found that iron sulfide was more stable during reaction with sodium and potassium than with lithium, indicating that such a battery based on sodium or potassium could have a much longer life than expected.

The difference between how the different ions reacted was stark visually. When exposed to lithium, iron sulfide particles appeared to almost explode under the electron microscope. On the contrary, the iron sulfide expanded like a balloon when exposed to the sodium and potassium.

"We saw a very robust reaction with no fracture - something that suggests that this material and other materials like it could be used in these novel batteries with greater stability over time," said Matthew Boebinger, a graduate student at Georgia Tech.

The study also casts doubt on the notion that large volume changes that occur during the electrochemical reaction are always a precursor to particle fracture, which causes electrode failure leading to battery degradation.

The researchers suggested that one possible reason for the difference in how the different ions reacted with the iron sulfide is that the lithium was more likely to concentrate its reaction along the particle's sharp cube-like edges, whereas the reaction with sodium and potassium was more diffuse along all of the surface of the iron sulfide particle. As a result, the iron sulfide particle when reacting with sodium and potassium developed a more oval shape with rounded edges.

While there's still more work to be done, the new research findings could help scientists design battery systems that use these types of novel materials.

"Lithium batteries are still the most attractive right now because they have the most energy density - you can pack a lot of energy in that space," McDowell said.

"Sodium and potassium batteries at this point don't have more density, but they are based on elements a thousand times more abundant in the earth's crust than lithium. So they could be much cheaper in the future, which is important for large scale energy storage - backup power for homes or the energy grid of the future."

Research Report: "Avoiding Fracture in a Conversion Battery Material through Reaction with Larger Ions"


Related Links
Georgia Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery
Beijing, China (SPX) Jun 18, 2018
Lithium-sulfur (Li-S) battery can be put into practice, if 20% of theoretical energy densities (2600 Wh/kg or 2800 Wh/L) can be achieved. Investigators have the ambition to reach the energy density of 500 Wh/kg in the near future. Xue-Ping Gao and co-workers, from Nankai University, tell us "Till now, the volumetric energy density of 500 Wh/L is not satisfied. But it was already realized in commercial lithium-ion batteries (LIBs) many years ago." They emphasize, "The low volumetric energy density ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Hong Kong consortium makes $9.8 bn bid for Australia's APA

'Carbon bubble' coming that could wipe trillions from the global economy

Trump readies new plan to aid coal and nuclear power

Carbon dioxide emissions drop from U.S. power sector

ENERGY TECH
Rutgers-led research could lead to more efficient electronics

Sodium- and potassium-based batteries hold promise for cheap energy storage

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery

The first experimental discovery in the world of the propagation of plasma turbulence

ENERGY TECH
New wind turbines are even efficient in low winds

Cryptocurrency blowing in the wind as mine opens in Estonia

U.S. Atlantic states eye offshore wind leadership

European wind energy generation potential in a warmer world

ENERGY TECH
Solar FlexRack completes shipments to 71 MW solar project in North Carolina

Wartsila leading along the path towards a 100% renewable energy future

German utility makes solar debut in Texas

Solar cells combining silicon with perovskite push achieve record efficiency over 25 percent

ENERGY TECH
Creating a new composite fuel for new-generation fast reactors

Nuclear power shutdowns won't spike power prices

Seawater yields first grams of yellowcake

Framatome and the EPR reactor: a robust history and the passion it takes to succeed

ENERGY TECH
Orange, tea tree and eucalyptus oils sweeten diesel fumes

Critical plant gene takes unexpected detour that could boost biofuel yields

'Tricking' bacteria into hydroxylating benzene

How to suck carbon dioxide from the sky for fuels and more

ENERGY TECH
Trade jitters send the price of oil lower

Maintenance drags Norwegian oil production lower

Venezuelan oil output charting new lows

Iran may have to wait for OPEC considerations

ENERGY TECH
S.Africa lifts state of disaster over drought

Can any civilization make it through climate change?

Germany admits will fall far short of 2020 climate target

Global warming can be limited by changing how we travel, heat homes, use devices









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.