Energy News  
Silicon-Germanium Microchips May Herald New Apps From Radar To Space Exploration

Professor John Cressler holds a 200 GHz silicon-germanium integrated circuit wafer at a cryogenic probe station capable of measuring temperatures to 200 degrees below zero Celsius.

Atlanta GA (SPX) Dec 14, 2005
Georgia Tech scientists and engineers are pursuing the dictum that "smaller is better" to develop a new breed of highly&endash; integrated silicon&endash;based microchips capable of operating in ultra-sophisticated radar systems and in new generations of NASA spacecraft.

Their research is focused on silicon-germanium (SiGe) integrated circuit technology, which can provide cost savings, compact size and improved efficiency in the same way that advances in silicon technology have made consumer electronics smaller and less expensive.

This research is supported by the U.S. Department of Defense and is known as the "Silicon-Germanium Transmit-Receive Module Project." A joint effort between the Georgia Tech Research Institute (GTRI) and faculty within the Georgia Electronic Design Center (GEDC) at Georgia Tech, its objective is to develop silicon-germanium technology for next-generation phased-array radar systems.

"The GTRI folks have a strong background in radar systems, while we have the silicon-germanium (Si-Ge) device and circuit expertise," said John D. Cressler, Byers professor in Georgia Tech's School of Electrical and Computer Engineering and a GEDC researcher. "We've teamed up to work on a new approach that literally has the capability to revolutionize the way radar systems are built, and this new GTRI-GEDC synergy is very exciting."

Phased-array radar systems under development by the Department of Defense, such as the Theater High-Altitude Area Defense Radar, are large, bulky and consume huge amounts of energy to power thousands of modules and thousands of gallium arsenide chips to electronically direct the radar beams.

"We're trying to put all the functionality of those complex modules onto a single chip, essentially reaching for the same level of functional integration in radar systems that has been going on in consumer electronics for the past decade," explained co-principal investigator Mark Mitchell, a GTRI senior research engineer.

Silicon-germanium chips may hold the answer, according to researchers, because of their capacity to hold an extraordinary number of very high-speed circuits on a single chip. In addition, silicon-germanium is a less expensive material than the compound semiconductors such as gallium arsenide or indium phosphide that have long been used in radar systems.

"In SiGe, you take a conventional silicon integrated circuit and use nanotechnology techniques to introduce germanium inside the silicon on an atomic scale," explained Cressler.

These nanoscale silicon-germanium layers can double or even triple chip performance, according to Cressler. The procedure is "completely compatible with conventional silicon chip manufacturing, so there's no cost penalty for the improved performance," he noted.

The main benefit, adds Mitchell, is cost. Phased-array radar systems, as presently constituted, are quite expensive. More affordable systems could also open up new applications for communications, aircraft weather radar and mobile uses such as collision-avoidance radar devices for automobiles, he notes.

Silicon-germanium is not without drawbacks for radar systems, however.

"The biggest limitation for the radar application is the amount of power that you can generate," said Mitchell. Silicon-germanium amplifiers can only produce about one watt of radio frequency (RF) power, versus 10 watts from a typical gallium arsenide device.

"While that's not adequate for some applications, it could be perfect for radar," said Mitchell, citing a GTRI study conducted for the Missile Defense Agency several years ago.

"They told us to ignore current technology and focus on the system parameters to determine how much power per element we'd want to get," he explained. "Our conclusion was roughly one watt per element. So the fact that silicon-germanium has the potential of delivering that makes it a perfect match for this particular application."

Even in cases where the lower power-handling capability of silicon-germanium might necessitate a design change, such as adding more antenna elements to generate the same output, "we're potentially saving so much money that we can make tradeoffs in the design that get around those limitations," he added. "If our elements are two or three orders of magnitude cheaper, and we only need twice as many, we still come out way ahead in terms of cost."

Another consideration that may be more of a design challenge than a drawback is that SiGe-based radar's lower per-element power equates to a larger antenna for greater sensitivity - perhaps tens of meters in size, depending on the application.

GTRI researchers such as senior research engineer Tracy Wallace are exploring ways to make these larger systems "tactically transportable." The work is being supported by the U.S. Missile Defense Agency.

"They can be much thinner and they can be folded up onto themselves," Wallace explained. "We have sketches, models and drawings of how that can be done."

Depending on the radar's destination, or if the fabrication cost of folding the radar is too high, the antenna and its supporting systems may simply be fashioned in a manner that facilitates final assembly on site, says Wallace, noting that some types of radar are already constructed that way.

Designers are also investigating ways to measure and compensate for deformities caused by the effect of gravity on a large aperture. One aspect of that is knowing the exact locations of all radiating elements to within a fraction of a wavelength, according to Wallace.

One approach favored by Wallace and his team involves photogrammetry, which provides information about physical objects by interpreting patterns of electromagnetic radiant energy and multiple digital photographs taken from different locations.

Another consideration arising from larger antenna arrays is the increased amount of data they collect, "so more computer resources are needed," Wallace said. "But as technology advances, that comes pretty cheap."

In another major government contract, GEDC researchers are developing silicon-germanium technology for electronic systems for NASA to use in lunar and Martian exploration, and interplanetary space probes.

Besides the advantages of low cost, high integration capability and high speed, SiGe chips are ideally suited for space because of the material's natural radiation hardness, a key concern for all space electronics, Cressler says.

Of particular interest to NASA is that silicon-germanium circuits also perform well in space's cryogenic temperatures - close to absolute zero, according to Cressler. Most electronic components do not work well in a very cool environment such as space. At present, spacecraft, probes and planetary rovers must be fitted with electronic "warm boxes," which add significant bulk, weight and cost to missions.

"If you want your electronics to operate in the shadows of craters on the lunar landscape, for example, you're talking about an extremely frigid environment - minus 230 degrees Celsius or 43 Kelvins above absolute zero," Cressler noted.

"Silicon-germanium electronics can operate at temperatures approaching absolute zero, and thus are ideally suited for such applications. It would be a huge advantage from a space-mission perspective to be able to simply let your electronics operate at those cold temperatures, and thus NASA is very interested in our SiGe research."

The first silicon-germanium transistors were demonstrated in the late 1980s, but only in the past five years or so has the field attracted widespread attention from the private sector, Cressler says.

With more than 20 scientists and graduate students involved in silicon-germanium research, Cressler's GEDC group is the largest university team in the world devoted to device and circuit research in SiGe.

"Anybody involved in high-speed communications circuits cares about SiGe," he said. "This new technology is an enabler for rethinking the way business-as-usual is done across a wide array of electronics applications, and that makes it really exciting to work on."

Community
Email This Article
Comment On This Article

Related Links
GEDC
Georgia Tech
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Breakthrough Chip Delivers Better Digital Pictures For Less Power
Rochester NY (SPX) Dec 09, 2005
The next advance in cameras is becoming a reality at the University of Rochester. A pair of newly patented technologies may soon enable power&endash;hungry imaging chips to use just a fraction of the energy used today and capture better images to boot all while enabling cameras to shrink to the size of a shirt button and run for years on a single battery.







  • Portugal Turns To Wind, Waves And Sun To Reduce Oil Dependence
  • OPEC Hawks Play Nice Guys
  • Paper-Thin, Foldable Battery To Attach To Clothes
  • New Paper Thin Foldable Battery Developed To Attach To Clothes

  • World Opinion Against The Building Of New Nuclear Plants: IAEA
  • Storage Of Spent Nuclear Fuel From Australia Illegal Says French Court
  • Ukraine Considers Storing Foreign Nuclear Waste At Chernobyl
  • Chinese PM Eyes Nuclear Future In France

  • What Is A Cloud
  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source

  • ESA Presents Space Solution To Montreal Forest Conference
  • Modern Forests Suffer From Century Old Logging Legacy
  • Tree Species Regulate Themselves In Ecological Communities
  • Tropical Dry Forests Receive International Recognition

  • French Court Decides Activists' Destruction Of GM Crops Was Justified
  • Fishing Inland Waters Putting Pressure On Fish Stocks
  • Ancient Canals Reveal Underpinnings Of Early Andean Civilization
  • Oil Mist Reduces Airborne Hazards In Concentrated Swine Feeding Operation

  • GM Hires Russian Nuclear Scientists To Develop New Auto Technology
  • Japan Creates The World's Fastest Electric Sedan
  • Motorists To Pay 'Congestion' Charge Over Broader Swath Of London
  • Solar Cars Driving Towards A Hydrogen Future

  • FAA, LockMart Complete National Rollout Of New Radar Data Communications Gateway
  • Anti-Missile Protection: Who Will Pay?
  • US Air Force Releases New Mission Statement
  • EADS Says A320 Contract With China Worth 7-8 Billion Dollars

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement