Energy News
ROBO SPACE
"Robot, make me a chair" robot-make-me-a-chair-in-six-prompts
illustration only

"Robot, make me a chair" robot-make-me-a-chair-in-six-prompts

by Andrew Paul Laurent | MIT Concrete Sustainability Hub
Boston MA (SPX) Dec 17, 2025

Computer-aided design (CAD) systems are tried-and-true tools used to design many of the physical objects we use each day. But CAD software requires extensive expertise to master, and many tools incorporate such a high level of detail they don't lend themselves to brainstorming or rapid prototyping.

In an effort to make design faster and more accessible for non-experts, researchers from MIT and elsewhere developed an AI-driven robotic assembly system that allows people to build physical objects by simply describing them in words.

Their system uses a generative AI model to build a 3D representation of an object's geometry based on the user's prompt. Then, a second generative AI model reasons about the desired object and figures out where different components should go, according to the object's function and geometry.

The system can automatically build the object from a set of prefabricated parts using robotic assembly. It can also iterate on the design based on feedback from the user.

The researchers used this end-to-end system to fabricate furniture, including chairs and shelves, from two types of premade components. The components can be disassembled and reassembled at will, reducing the amount of waste generated through the fabrication process.

They evaluated these designs through a user study and found that more than 90 percent of participants preferred the objects made by their AI-driven system, as compared to different approaches.

While this work is an initial demonstration, the framework could be especially useful for rapid prototyping complex objects like aerospace components and architectural objects. In the longer term, it could be used in homes to fabricate furniture or other objects locally, without the need to have bulky products shipped from a central facility.

"Sooner or later, we want to be able to communicate and talk to a robot and AI system the same way we talk to each other to make things together. Our system is a first step toward enabling that future," says lead author Alex Kyaw, a graduate student in the MIT departments of Electrical Engineering and Computer Science (EECS) and Architecture.

Kyaw is joined on the paper by Richa Gupta, an MIT architecture graduate student; Faez Ahmed, associate professor of mechanical engineering; Lawrence Sass, professor and chair of the Computation Group in the Department of Architecture; senior author Randall Davis, an EECS professor and member of the Computer Science and Artificial Intelligence Laboratory (CSAIL); as well as others at Google Deepmind and Autodesk Research. The paper was recently presented at the Conference on Neural Information Processing Systems.

Generating a multicomponent design

While generative AI models are good at generating 3D representations, known as meshes, from text prompts, most do not produce uniform representations of an object's geometry that have the component-level details needed for robotic assembly.

Separating these meshes into components is challenging for a model because assigning components depends on the geometry and functionality of the object and its parts.

The researchers tackled these challenges using a vision-language model (VLM), a powerful generative AI model that has been pre-trained to understand images and text. They task the VLM with figuring out how two types of prefabricated parts, structural components and panel components, should fit together to form an object.

"There are many ways we can put panels on a physical object, but the robot needs to see the geometry and reason over that geometry to make a decision about it. By serving as both the eyes and brain of the robot, the VLM enables the robot to do this," Kyaw says.

A user prompts the system with text, perhaps by typing "make me a chair," and gives it an AI-generated image of a chair to start.

Then, the VLM reasons about the chair and determines where panel components go on top of structural components, based on the functionality of many example objects it has seen before. For instance, the model can determine that the seat and backrest should have panels to have surfaces for someone sitting and leaning on the chair.

It outputs this information as text, such as "seat" or "backrest." Each surface of the chair is then labeled with numbers, and the information is fed back to the VLM.

Then the VLM chooses the labels that correspond to the geometric parts of the chair that should receive panels on the 3D mesh to complete the design.

Human-AI co-design

The user remains in the loop throughout this process and can refine the design by giving the model a new prompt, such as "only use panels on the backrest, not the seat."

"The design space is very big, so we narrow it down through user feedback. We believe this is the best way to do it because people have different preferences, and building an idealized model for everyone would be impossible," Kyaw says.

"The human-in-the-loop process allows the users to steer the AI-generated designs and have a sense of ownership in the final result," adds Gupta.

Once the 3D mesh is finalized, a robotic assembly system builds the object using prefabricated parts. These reusable parts can be disassembled and reassembled into different configurations.

The researchers compared the results of their method with an algorithm that places panels on all horizontal surfaces that are facing up, and an algorithm that places panels randomly. In a user study, more than 90 percent of individuals preferred the designs made by their system.

They also asked the VLM to explain why it chose to put panels in those areas.

"We learned that the vision language model is able to understand some degree of the functional aspects of a chair, like leaning and sitting, to understand why it is placing panels on the seat and backrest. It isn't just randomly spitting out these assignments," Kyaw says.

In the future, the researchers want to enhance their system to handle more complex and nuanced user prompts, such as a table made out of glass and metal. In addition, they want to incorporate additional prefabricated components, such as gears, hinges, or other moving parts, so objects could have more functionality.

"Our hope is to drastically lower the barrier of access to design tools. We have shown that we can use generative AI and robotics to turn ideas into physical objects in a fast, accessible, and sustainable manner," says Davis.

Research Report:Text to Robotic Assembly of Multi Component Objects using 3D Generative AI and Vision Language Models

Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ROBO SPACE
Robots that spare warehouse workers the heavy lifting
Cambridge MA (SPX) Dec 05, 2025
There are some jobs human bodies just weren't meant to do. Unloading trucks and shipping containers is a repetitive, grueling task - and a big reason warehouse injury rates are more than twice the national average. The Pickle Robot Company wants its machines to do the heavy lifting. The company's one-armed robots autonomously unload trailers, picking up boxes weighing up to 50 pounds and placing them onto onboard conveyor belts for warehouses of all types. The company name, an homage to The ... read more

ROBO SPACE
France updates net-zero plan, with fossil fuel phaseout; Fight over fossil fuels nixes key text of UN environment report

EU agrees to weaken and delay green business rules

Policies to expand US grid weigh cost reliability and emissions

Keep energy infrastructure out of war, Turkey warns Moscow, Kyiv

ROBO SPACE
France's 'Battery Valley' makes use of Asian experts

Plasma turbulence plays dual roles in fusion reactors

Helical Fusion and Aoki Super sign fusion power deal for supermarket operations

Highly Efficient Lead Free Material Converts Motion into Electricity

ROBO SPACE
S.Africa seeks to save birds from wind turbine risks

Vertical wind turbines may soon power UK railways using tunnel airflow

Danish wind giant Orsted to cut workforce by a quarter

French-German duo wins mega offshore wind energy project

ROBO SPACE
Bilayer tin oxide layer boosts back contact perovskite solar cell efficiency and stability

Acid treated carbon nanotubes raise efficiency and durability of flexible perovskite solar modules

Solar panels over crops ease heat stress for farmworkers

FEOC and the Black Ships: How America Is Replaying Gunboat Diplomacy Against Itself

ROBO SPACE
India's parliament passes bill to open nuclear power to private firms

New analysis links lead cooled reactor corrosion to steel microstructure

Microbes join forces to quickly clean up uranium pollution

Antares lines up $96 million to advance microreactor rollout

ROBO SPACE
Carbon monoxide enables rapid atomic scale control for fuel cell catalysts

Singapore sets course for 'green' methanol ship fuel supplies

Methane conversion enabled by iron catalyst delivers pharmaceutical compounds

Illinois team creates aviation fuel from food waste with circular economy benefits

ROBO SPACE
Hydrogen plays part in global warming: study

US oil blockade of Venezuela: what we know

ExxonMobil slows low-carbon investment push through 2030

Israel, Qatar and US hold trilateral meeting in New York

ROBO SPACE
Turkmenistan's battle against desert sand

Rain in Tehran brings relief from nationwide drought

US agency wipes climate change facts from website: reports

Trump administration plans to dismantle leading climate center

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.