Energy News  
ENERGY TECH
New hard-carbon anode material for sodium-ion batteries will solve the lithium conundrum
by Staff Writers
Tokyo, Japan (SPX) Dec 15, 2020

file illustration only

Cost-effective rechargeable batteries are at the heart of virtually all portable electronic devices, which have become ubiquitous in modern daily life. Moreover, rechargeable batteries are essential components in many environment-friendly technologies, such as electric cars and systems that harvest renewable energy.

They are also key enablers of various medical devices and facilitate research in various fields as the energy source of electronic sensors and cameras. So, it shouldn't come as a surprise that there is a lot of effort spent in developing better and cheaper rechargeable batteries.

So far, rechargeable lithium-ion batteries hold the number-one spot thanks to their great performance across the board in terms of capacity, stability, price, and charging time. However, lithium, and other minor and costly metals like cobalt and copper, are not among the most abundant materials on the earth's crust, and their ever-increasing demand will soon lead to supply problems around the world.

At the Tokyo University of Science, Japan, Professor Shinichi Komaba and colleagues have been striving to find a solution to this worsening conundrum by developing rechargeable batteries using alternative, more abundant materials.

In a recent study published in Angewandte Chemie International Edition, the team found an energy efficient method to produce a novel carbon-based material for sodium-ion batteries. Apart from Prof. Komaba, the team also included Ms. Azusa Kamiyama and Associate Prof. Kei Kubota from Tokyo University of Science, Dr. Yong Youn and Dr. Yoshitaka Tateyama from National Institute for Materials Science, Japan, and Associate Prof. Kazuma Gotoh from Okayama University, Japan.

The study focused on the synthesis of hard carbon, a highly porous material that serves as the negative electrode of rechargeable batteries, through the use of magnesium oxide (MgO) as an inorganic template of nano-sized pores inside hard carbon.

The researchers explored a different technique for mixing the ingredients of the MgO template so as to precisely tune the nanostructure of the resulting hard carbon electrode. After multiple experimental and theoretical analyses, they elucidated the optimal fabrication conditions and ingredients to produce hard carbon with a capacity of 478 mAh/g, the highest ever reported in this type of material.

Prof. Komaba states, "Until now, the capacity of carbon-based negative electrode materials for sodium-ion batteries was mostly around 300 to 350 mAh/g. Though values near 438 mAh/g have been reported, those materials require heat treatment at extremely high temperatures above 1900C. In contrast, we employed heat treatment at only 1500C, a relatively low temperature." Of course, with lower temperature comes lower energy expenditure, which also means lower cost and less environmental impact.

The capacity of this newly developed hard carbon electrode material is certainly remarkable, and greatly surpasses that of graphite (372 mAh/g), which is currently used as the negative electrode material in lithium-ion batteries. Moreover, even though a sodium-ion battery with this hard carbon negative electrode would in theory operate at a 0.3-volt lower voltage difference than a standard lithium-ion battery, the higher capacity of the former would lead to a much greater energy density by weight (1600 Wh/kg versus 1430 Wh/kg), resulting in +19% increase of energy density.

Excited about the results and with his eyes on the future, Prof. Komaba remarks, "Our study proves that it is possible to realize high-energy sodium-ion batteries, overturning the common belief that lithium-ion batteries have a higher energy density. The hard carbon with extremely high capacity that we developed has opened a door towards the design of new sodium-storing materials."

Further studies will be required to verify that the proposed material actually offers superior lifetime, input-output characteristics, and low temperature operation in actual sodium-ion batteries. With any luck, we might be on the verge of witnessing the next generation of rechargeable batteries!

Research paper


Related Links
Tokyo University Of Science
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Upscaling thermochemical energy storage to a commercial level
Stockholm, Sweden (SPX) Dec 11, 2020
One of the largest obstacles in using renewable energy efficiently is the possibility to store energy on a large scale. SaltX Technology AB has partnered with Sumitomo SHI FW (SFW) to solve this in terms of heat energy. "The storage solution is like a "salt battery". It is based on a basic chemical process with a very common material, calcium oxide produced from limestone, with enhanced properties by our nanocoating process", explains Carl-Johan Liner, CEO of SaltX. Simplified, when calcium ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
EU leaders save landmark budget, but spar over climate

UK insists can achieve 68 percent emissions cut by 2030

Nestle unveils multi-billion push to slash carbon footprint

EU set to meet two of its three 2020 climate goals

ENERGY TECH
Engineers go microbial to store energy, sequester CO2

A cool advance in thermoelectric conversion

New hard-carbon anode material for sodium-ion batteries will solve the lithium conundrum

Artificial intelligence improves control of powerful plasma accelerators

ENERGY TECH
Norway launches major wind power research centre

Supersized wind turbines generate clean energy - and surprising physics

NREL advanced manufacturing research moves wind turbine blades toward recyclability

Policy, not tech, spurred Danish dominance in wind energy

ENERGY TECH
New blended solar cells yield high power conversion efficiencies

Ecoppia Signed Another Significant Project Of 450MW With Solar Leader Azure Power

Environmental value of renewable energy varies from place to place

India's Modi lays foundations for renewable energy megapark

ENERGY TECH
UK set for talks with France's EDF over nuclear plant

Framatome and Schweitzer to provide digital protection relays to nuclear power plants

Framatome 3D-prints metallic uranium fuel objects

Framatome signs agreement with Rolls Royce to acquire its civil nuclear businesses

ENERGY TECH
British military looking to move aircraft to sustainable fuel sources

Shedding light on the dark side of biomass burning pollution

Applying compost to landfills could have environmental benefits

Finland's muddy fight over super-polluting peat energy

ENERGY TECH
Disaster awaits if aging Red Sea oil tanker isn't emptied soon

Norway okays giant North Sea carbon storage project

Iraqis shed masks as economic pain overshadows virus fear

Nanoengineered cement shows promise for sealing leaky gas wells

ENERGY TECH
Kerry says US will need to regain 'credibility' in climate talks

Five years on, summit aims to breathe life into Paris deal

Since Paris deal, climate catastrophes mount

UN chief slams 'suicidal' failure to combat global warming









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.