Energy News
CHIP TECH
Johns Hopkins team breaks through quantum noise
illustration only

Johns Hopkins team breaks through quantum noise

by Ajai Raj
Laurel, MD (SPX) Nov 24, 2025

Researchers from the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, and Johns Hopkins University in Baltimore have achieved a breakthrough in quantum noise characterization in quantum systems - a key step toward reliably managing errors in quantum computing. Their findings, published in Physical Review Letters, make important strides in addressing a long-standing obstacle to developing useful quantum computers.

Noise in quantum systems can come from traditional sources, like temperature swings, vibration, and electrical interference, as well as from atomic-level activity, like spin and magnetic fields, associated with quantum processing. Assessing the impact of noise on quantum algorithms is the first step to mitigating those effects, said Gregory Quiroz, a senior physicist at APL and an associate research professor in the Department of Physics and Astronomy at the Johns Hopkins University Krieger School of Arts and Sciences.

"Today's models are commonly too simplistic to capture how quantum noise affects computation on real hardware," Quiroz said. "Our work is trying to bridge that gap."

A Matter of Time (and Space)

Many simplified models can only capture single instances of noise, isolated to one moment and one location in the quantum processor. But the most significant sources of noise spread across space and time, Quiroz explained.

"Capturing the effects of noise on the system over time and in multiple locations is really important to successfully implementing quantum error-correcting codes fault-tolerantly," he said. "This is a problem we have to solve for large-scale quantum computers to work."

Exploiting Symmetry

A quantum system becomes exponentially more complex as it scales up, making it even more difficult to understand how noise propagates in the system. To overcome this obstacle, Quiroz and co-author William Watkins, a physics graduate student pursuing his doctorate at Johns Hopkins within Quiroz's research group, exploited a property of physics that helps simplify complex problems: symmetry.

"Symmetry provides structure, which allows us to simplify the problem by bringing in mathematical constructs that make it more tractable in the presence of noise," Quiroz said.

Watkins realized that he could apply a mathematical technique called root space decomposition, a method that organizes how actions take place in a quantum system, to radically simplify how the system is represented and analyzed. The technique had been used to make progress in other areas of quantum mechanics, but to their knowledge, no one had applied it to quantum noise characterization before.

"It gave us insight into the problem in a mathematically compact and beautiful way, and gave us language to describe the problem," Watkins said. "In one sense, you could say that our innovative framework is built on this mathematical foundation."

Simply put, applying this technique allows a quantum system to be represented as a ladder, with each rung serving as a discrete state of the system. Quiroz and Watkins could then apply noise to the system to see whether specific types of noise caused the system to jump from one rung to another.

"That allows us to classify noise into two different categories, which tells us how to mitigate it," explained Watkins. "If it causes the system to move from one rung to another, we can apply one technique; if it doesn't, we apply another."

This, in turn, will contribute in multiple ways to building error-resilient quantum systems, Quiroz said.

"Being able to characterize how noise impacts quantum systems helps us not only design better systems at the physical level but also develop algorithms and software that take quantum noise into account," he said.

APL's Quantum Portfolio

Quiroz noted that APL has expertise spanning the spectrum of quantum computing challenges - experimental physics, quantum algorithms, controlling quantum bits, and quantum error correction - and taking a noise-centric view of these research areas has been the main driver of the Laboratory's work.

"Noise is a fundamentally hard problem standing in the way of large-scale quantum processors," he said. "And APL is equipped with the expertise and ingenuity to solve it."

"Our wide-ranging quantum noise portfolio includes studying fundamental sources of noise, such as cosmic rays, and developing novel noise characterization and mitigation protocols," added Kevin Schultz, assistant program manager for Alternative Computing Paradigms in APL's Research and Exploratory Development Mission Area. "We are very excited about this particular study due to the insight it provides on the impacts of noise on quantum algorithms and error correction, and we plan to pursue the potential research threads it suggests in the future."

Research Report:Classical Non-Markovian Noise in Symmetry-Preserving Quantum Dynamics

Related Links
Johns Hopkins University Applied Physics Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
New class of soft materials process logic using beams of light
Los Angeles CA (SPX) Nov 21, 2025
Researchers from McMaster University and the University of Pittsburgh have created the first functionally complete NAND gate in a soft material using beams of visible light. Published in Nature Communications, the work establishes a major contribution to the concept of materials that compute, where the material itself processes information without conventional electronic circuits. Fariha Mahmood, the paper's first author and a postdoctoral researcher at Cambridge, recounted, "To see these material ... read more

CHIP TECH
UN slams 'meagre' COP results, 'fatal inaction' of leaders

Clean energy production from food waste enhanced by biochar in two stage digestion system

Concordia researchers model a sustainable, solar-powered 15-minute city

Amazon climate deal a 'win' for global unity but fossil fuels untouched

CHIP TECH
Highly Efficient Lead Free Material Converts Motion into Electricity

Wafer-scale capacitors produced in one second with rapid heating and cooling process

Zap Energy achieves extreme fusion plasma pressures in new FuZE-3 trial

Adoption of dynamic control technology improves EV charging grid integration

CHIP TECH
S.Africa seeks to save birds from wind turbine risks

Vertical wind turbines may soon power UK railways using tunnel airflow

Danish wind giant Orsted to cut workforce by a quarter

French-German duo wins mega offshore wind energy project

CHIP TECH
Solar cell defect analysis advances with new transient response technique

Floating solar panels show promise, but environmental impacts vary

Blade-coating advances promise uniform perovskite solar films at industrial scale

Solar plant grid stability improves as Cordoba researchers deploy high-speed sensor system

CHIP TECH
Successful fabrication of nuclear fuel assemblies boosts Barakah plant supply chain

Electrochemical system boosts uranium recovery from wastewater

World's biggest nuclear plant edges closer to restart

Uranium extraction from seawater progresses with engineered material for nuclear fuel supply

CHIP TECH
Singapore sets course for 'green' methanol ship fuel supplies

Methane conversion enabled by iron catalyst delivers pharmaceutical compounds

Illinois team creates aviation fuel from food waste with circular economy benefits

Industrial microbe enables conversion of carbon monoxide to ethanol

CHIP TECH
New regulations on ship fuel spark significant changes in cloud formation

Quantum tunneling enables hydrogen to traverse energy barriers in palladium lattice

Hydrogen tanks set to reshape zero emission aviation sector

Court suspends Belgian farmer climate case against TotalEnergies

CHIP TECH
Calcite deposit from southern Nevada cave reveals 580,000 years of climate history

Erdogan hails Australia deal as Turkey to host COP31 summit

Australia yields to Turkey in standoff over next climate summit

'In it to win it': Australia doubles down on climate hosting bid

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.