Energy News  
ENERGY TECH
How do molecular motors convert chemical energy in to mechanical work?
by Staff Writers
Hamburg, Germany (SPX) Sep 06, 2022

Artistic representation of the Holliday junction and the RuvB motors. Credit: CSSB, Nicola Graf

Molecular motors are complex devices composed of many different parts that consume energy to perform various cellular activities. In short, molecular machines transform energy into useful work. Understanding the mechanistical aspects underlying these motors begins with generating a detailed description of their overall architecture and atomic organisation. However, to uncover the core mechanisms energizing these motors it is essential to decode all of the molecular dynamics in atomic detail.

Now, the research team of Thomas C. Marlovits from the Centre for Structural Systems Biology CSSB at DESY and the University Medical Center Hamburg-Eppendorf (UKE) in Hamburg reveals the architecture, complete functional cycle and the mechanism of such a molecular motor: They report in the journal Nature, how a 'RuvAB branch migration complex' converts chemical energy into mechanical work to perform recombination and repair of DNA.

DNA recombination is one of the most fundamental biological processes in living organisms. It is the process by which chromosomes "swap" DNA either to generate genetic diversity, by creating new offspring, or to maintain genetic integrity, by repairing breaks in existing chromosomes. During DNA recombination, four DNA arms separate from their double-helix formations and join together at an intersection known as a Holliday junction. Here the DNA arms exchange strands in a process called active branch migration.

The essential energy needed for this branch migration to occur comes from a molecular machinery that scientists have tagged as the RuvAB branch migration complex. This complex assembles around the Holliday junction and is made of two motors labelled RuvB AAA+ ATPases, that fuel the reaction, and a RuvA stator. The research team has now provided an intricate blueprint that explains how the RuvB AAA+ motors work under the regulation of the RuvA protein to perform synchronized DNA movement.

The active branch migrations energized by the RuvB AAA+ motor molecule are very fast and highly dynamic. To determine the individual steps of this process, the scientists used time-resolved cryo electron microscopy to observe the motor's machinery in slow motion. "We basically provided the RuvB AAA+ motor with a slower burning fuel which allowed us to capture the biochemical reactions as they occur," explains Marlovits.

The scientist captured over ten million images of the motor machinery interacting with the Holliday junction. Jiri Wald (CSSB, UKE and part of the Vienna BioCenter PhD Program), the paper's first author, combed through the immense amount of data and carefully classified the subtle changes occurring in each image. Using the high-performance computing facility at DESY, the scientists were then able to put all the puzzle pieces together to generate a high-resolution movie detailing how the RuvAB complex functions on the molecular scale.

"We were able to visualize seven distinct states of the motor and demonstrate how the interconnected elements work together in a cyclical manner," explains Wald. "We also demonstrated that the RuvB motor converts energy into a lever motion which generates the force that drives branch migration. We were amazed by the discovery that the motors use a basic lever mechanism to move the DNA substrate. Overall, the sequential mechanism, coordination and force generation manner of the RuvAB motor share conceptual similarities with combustion engines."

AAA+ motors are often used in other biological systems, such as protein transport, therefore this detailed model of the RuvB AAA+ motor can be used as a blueprint for similar molecular motors. "We understand how the motor works and now we can put this motor into another system with some minor adaptations," explains Marlovits. "We are essentially presenting core principles for AAA+ motors."

The Marlovits group's future work will explore ways to interfere with the function of AAA+ motors. This could provide the basis for the development of a new generation of drugs, which would disrupt the mechanisms of such a motor in pathogens and thus halt the spread of infection. "We are excited to explore the possibilities that exist now that we have a blueprint of the RuvB AAA+ motor," notes Wald.

Scientists from CSSB, UKE, the Institute of Molecular Biotechnology, the Research Institute of Molecular Pathology, both in Vienna, Austria, and DESY contributed to this research.

CSSB is a joint initiative of ten research partners from Northern Germany, including three universities and six research institutes that devotes itself to infection biology research.

DESY is one of the world's leading particle accelerator centres and investigates the structure and function of matter - from the interaction of tiny elementary particles and the behaviour of novel nanomaterials and vital biomolecules to the great mysteries of the universe. The particle accelerators and detectors that DESY develops and builds at its locations in Hamburg and Zeuthen are unique research tools. They generate the most intense X-ray radiation in the world, accelerate particles to record energies and open up new windows onto the universe. DESY is a member of the Helmholtz Association, Germany's largest scientific association, and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent).

Research Report:Mechanism of AAA+ ATPase-mediated RuvAB-Holliday junction branch migration


Related Links
Deutsches Elektronen-Synchrotron DESY
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Forging a path toward safe geothermal energy
Pittsburgh PA (SPX) Aug 25, 2022
An abundant and clean energy resource is under almost everyone's feet. But harnessing it has proven to be a challenge for the last half century. Geothermal energy utilizes the heat of rocks far below the Earth's surface to create steam to spin turbines which generate electrical power. But tapping these vast resources thousands of feet below the surface is a challenge which requires a better understanding of the rocks and all the stresses on them. Engineers at the University of Pittsburgh are ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Berlin tech show facing up to era of energy scarcity

Fossil fuel investment in Africa dwarfs clean air funding

African countries to stand by 1.5C target at climate talks talks

G20 talks end with pledge to accelerate energy transition

ENERGY TECH
SwRI demonstrates small-scale pumped heat energy storage system

New stable quantum batteries can reliably store energy into electromagnetic fields

How do molecular motors convert chemical energy in to mechanical work?

A new concept for low-cost batteries

ENERGY TECH
Europe and China operate the largest number of offshore wind farms

A new method boosts wind farms' energy output, without new equipment

Modern wind turbines can more than compensate for decline in global wind resource

End-of-life plan needed for tens of thousands of wind turbine blades

ENERGY TECH
Photosynthesis copycat may improve solar cells

NREL-led breakthrough pushes perovskite cell to greater stability, efficiency

Major leap for stable high-efficiency perovskite solar cells

Frontier Research Center to advance molecular-level solar science

ENERGY TECH
Germany's nuclear stay fails to quell debate

Zaporizhzhia: the nuclear power plant caught in the war in Ukraine

Turkey offers to mediate in Ukraine nuclear plant standoff

UN watchdog urges security zone at Ukraine nuclear plant

ENERGY TECH
Turning fish waste into quality carbon-based nanomaterial

Brazilian scientists reveal method of converting methane gas into liquid methanol

MSU researchers create method for breaking down plant materials for earth-friendly energy

Solar-powered chemistry uses CO2 and H2O to make feedstock for fuels, chemicals

ENERGY TECH
Russia burning excess gas after Europe supply cut: EU energy chief

US calls Erdogan threats to Greece 'unhelpful'

East Timor says China could help fund major pipeline project

China to pay for Russian gas in yuan, rubles

ENERGY TECH
G7 corporate climate plans spell 2.7C heating: analysis

Gone in 30 years? The Welsh village in crosshairs of climate change

New Zealand winter warmest, wettest on record

England's drought-hit summer 2022 joint hottest on record









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.