Energy News  
ENERGY TECH
Gaming graphics card allows faster, more precise control of fusion energy experiments
by Staff Writers
Seattle WA (SPX) Jul 24, 2021

Two photos of the team's prototype reactor, showing the three injectors with (right) and without (left) the electrical circuits (labeled in green on the right) used to form magnetized plasmas in each injector. The GPU precisely controls each of these circuits, allowing the researchers to fine-tune plasma formation in each injector. The individual plasmas then combine and naturally organize into a doughnut-shaped object, similar to a smoke ring.

Nuclear fusion offers the potential for a safe, clean and abundant energy source. This process, which also occurs in the sun, involves plasmas, fluids composed of charged particles, being heated to extremely high temperatures so that the atoms fuse together, releasing abundant energy.

One challenge to performing this reaction on Earth is the dynamic nature of plasmas, which must be controlled to reach the required temperatures that allow fusion to happen. Now researchers at the University of Washington have developed a method that harnesses advances in the computer gaming industry: It uses a gaming graphics card, or GPU, to run the control system for their prototype fusion reactor.

The team published these results May 11 in Review of Scientific Instruments.

"You need this level of speed and precision with plasmas because they have such complex dynamics that evolve at very high speeds. If you cannot keep up with them, or if you mispredict how plasmas will react, they have a nasty habit of going in the totally wrong direction very quickly," said co-author Chris Hansen, a UW senior research scientist in the aeronautics and astronautics department.

"Most applications try to operate in an area where the system is pretty static. At most all you have to do is 'nudge' things back in place," Hansen said. "In our lab, we are working to develop methods to actively keep the plasma where we want it in more dynamic systems."

The UW team's experimental reactor self-generates magnetic fields entirely within the plasma, making it potentially smaller and cheaper than other reactors that use external magnetic fields.

"By adding magnetic fields to plasmas, you can move and control them without having to 'touch' the plasma," Hansen said. "For example, the northern lights occur when plasma traveling from the sun runs into the Earth's magnetic field, which captures it and causes it to stream down toward the poles. As it hits the atmosphere, the charged particles emit light."

The UW team's prototype reactor heats plasma to about 1 million degrees Celsius (1.8 million degrees Fahrenheit). This is far short of the 150 million degrees Celsius necessary for fusion, but hot enough to study the concept.

Here, the plasma forms in three injectors on the device and then these combine and naturally organize into a doughnut-shaped object, like a smoke ring. These plasmas last only a few thousandths of a second, which is why the team needed to have a high-speed method for controlling what's happening.

Previously, researchers have used slower or less user-friendly technology to program their control systems. So the team turned to an NVIDIA Tesla GPU, which is designed for machine learning applications.

"The GPU gives us access to a huge amount of computing power," said lead author Kyle Morgan, a UW research scientist in the aeronautics and astronautics department. "This level of performance was driven by the computer gaming industry and, more recently, machine learning, but this graphics card provides a really great platform for controlling plasmas as well."

Using the graphics card, the team could fine-tune how plasmas entered the reactor, giving the researchers a more precise view of what's happening as the plasmas form - and eventually potentially allowing the team to create longer-living plasmas that operate closer to the conditions required for controlled fusion power.

"The biggest difference is for the future," Hansen said. "This new system lets us try newer, more advanced algorithms that could enable significantly better control, which can open a world of new applications for plasma and fusion technology."


Related Links
University Of Washington
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Manipulating magnets in the quest for fusion
Boston MA (SPX) Jul 21, 2021
After decades of plasma physics research, Senior Research Scientist Brian LaBombard is taking on magnets for MIT's new fusion effort. "You get the high field, you get the performance." Senior Research Scientist Brian LaBombard is summarizing what might be considered a guiding philosophy behind designing and engineering fusion devices at MIT's Plasma Science and Fusion Center (PSFC). Beginning in 1972 with the Alcator A tokamak, through Alcator C (1978) and Alcator C-Mod (1991), the PSFC has used ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Powering Iraqi homes one switch at a time

Blasted by flames, California to modernize its power grid

Israel announces plan to slash carbon emissions by 2050

G20 ministers sign deal but stuck on global warming caps

ENERGY TECH
Gaming graphics card allows faster, more precise control of fusion energy experiments

Department of Energy announces $9.35 million for research on high energy density plasmas

Europe to boost battery production as electric shift accelerates

Tesla mints nickel deal with Aussie mining giant

ENERGY TECH
For golden eagles, habitat loss is main threat from wind farms

Wind turbines can be clustered while avoiding turbulent wakes of their neighbors

Shell, France's EDF to build US offshore windfarm

Wind and the sun power Greek islands' green energy switch

ENERGY TECH
Print perovskite solar cells

Surrey researchers working to find suitable solvents for perovskite inks

Japan ups 2030 renewables goal in draft energy policy

Renewable energy OK, but not too close to home

ENERGY TECH
China nuclear reactor shut down for maintenance after damage

GE Hitachi awarded long-term outage services contract by Leibstadt Nuclear Power Plant

Investigating materials for safe, secure nuclear power

Framatome achieves milestone in development of advanced fuel technology

ENERGY TECH
Catalyzing the conversion of biomass to biofuel

Airbus joins SAF+ Consortium to for sustainable aviation fuels

Cleaner air has boosted US corn and soybean yields

Unlocking the power of the microbiome

ENERGY TECH
Key factors for estimating costs to plug abandoned oil and gas wells

Israel blames Iran over lethal attack on oil tanker off Oman

Iraq, Lebanon sign deal to swap fuel oil for medical services

Israel freezes UAE oil deal over environmental concerns

ENERGY TECH
Climate science report 'critical for success' of COP26: UN

UK hosts 51 countries for climate talks ahead of COP26

India: on the frontline of climate change

IPCC, the world's unrivaled authority on climate science









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.