![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Seattle WA (SPX) Jul 24, 2021
Nuclear fusion offers the potential for a safe, clean and abundant energy source. This process, which also occurs in the sun, involves plasmas, fluids composed of charged particles, being heated to extremely high temperatures so that the atoms fuse together, releasing abundant energy. One challenge to performing this reaction on Earth is the dynamic nature of plasmas, which must be controlled to reach the required temperatures that allow fusion to happen. Now researchers at the University of Washington have developed a method that harnesses advances in the computer gaming industry: It uses a gaming graphics card, or GPU, to run the control system for their prototype fusion reactor. The team published these results May 11 in Review of Scientific Instruments. "You need this level of speed and precision with plasmas because they have such complex dynamics that evolve at very high speeds. If you cannot keep up with them, or if you mispredict how plasmas will react, they have a nasty habit of going in the totally wrong direction very quickly," said co-author Chris Hansen, a UW senior research scientist in the aeronautics and astronautics department. "Most applications try to operate in an area where the system is pretty static. At most all you have to do is 'nudge' things back in place," Hansen said. "In our lab, we are working to develop methods to actively keep the plasma where we want it in more dynamic systems." The UW team's experimental reactor self-generates magnetic fields entirely within the plasma, making it potentially smaller and cheaper than other reactors that use external magnetic fields. "By adding magnetic fields to plasmas, you can move and control them without having to 'touch' the plasma," Hansen said. "For example, the northern lights occur when plasma traveling from the sun runs into the Earth's magnetic field, which captures it and causes it to stream down toward the poles. As it hits the atmosphere, the charged particles emit light." The UW team's prototype reactor heats plasma to about 1 million degrees Celsius (1.8 million degrees Fahrenheit). This is far short of the 150 million degrees Celsius necessary for fusion, but hot enough to study the concept. Here, the plasma forms in three injectors on the device and then these combine and naturally organize into a doughnut-shaped object, like a smoke ring. These plasmas last only a few thousandths of a second, which is why the team needed to have a high-speed method for controlling what's happening. Previously, researchers have used slower or less user-friendly technology to program their control systems. So the team turned to an NVIDIA Tesla GPU, which is designed for machine learning applications. "The GPU gives us access to a huge amount of computing power," said lead author Kyle Morgan, a UW research scientist in the aeronautics and astronautics department. "This level of performance was driven by the computer gaming industry and, more recently, machine learning, but this graphics card provides a really great platform for controlling plasmas as well." Using the graphics card, the team could fine-tune how plasmas entered the reactor, giving the researchers a more precise view of what's happening as the plasmas form - and eventually potentially allowing the team to create longer-living plasmas that operate closer to the conditions required for controlled fusion power. "The biggest difference is for the future," Hansen said. "This new system lets us try newer, more advanced algorithms that could enable significantly better control, which can open a world of new applications for plasma and fusion technology."
![]() ![]() Manipulating magnets in the quest for fusion Boston MA (SPX) Jul 21, 2021 After decades of plasma physics research, Senior Research Scientist Brian LaBombard is taking on magnets for MIT's new fusion effort. "You get the high field, you get the performance." Senior Research Scientist Brian LaBombard is summarizing what might be considered a guiding philosophy behind designing and engineering fusion devices at MIT's Plasma Science and Fusion Center (PSFC). Beginning in 1972 with the Alcator A tokamak, through Alcator C (1978) and Alcator C-Mod (1991), the PSFC has used ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |