Energy News  
ENERGY TECH
Fusion science and astronomy collaboration enables investigation of the origin of heavy elements
by Staff Writers
Tokyo, Japan (SPX) Mar 13, 2019

Artist's impression of a kilonova caused by a neutron star merger. In the material released by the merger, various heavy elements are formed, which then absorb and emit light. New atomic data calculations help to clarify kilonovae.

A research team of experts in atomic physics, nuclear fusion science, and astronomy succeeded in computing millions of highly accurate atomic data of neodymium ions in the Japan-Lithuania international collaboration. This research accelerates studies of a long-standing mystery regarding the origin of precious metals such as gold and platinum in our universe.

It is not yet identified where and how elements heavier than iron in the universe have been made. Drawing attention as one of the origins of the heavy elements is a merger of two neutron stars. In August 2017, gravitational waves caused by the merger of two neutron stars 130 million years ago were detected.

At the same time, emission of the light called kilonova was also observed. The light of a kilonova comes from the material released by the merger of the neutron stars, and it is believed that the material contains abundant heavy elements, including precious metals such as gold and platinum, and rare earth metals such as neodymium.

Elements have the property of absorbing light. The wavelength of the light absorbed by the element and the degree of its absorption are unique to each element and they are called atomic data. By using this atomic data, we can estimate the species and the abundance of heavy elements produced in the merger of neutron stars by analyzing the brightness and the wavelength distributions of the light of a kilonova.

However, the available atomic data of heavy elements are extremely limited in widely used world standard databases of the National Institute of Standards and Technology (NIST). Therefore, collaborative research in the fields of atomic physics, astronomy and fusion science is conducted to provide highly accurate atomic data for the light of a kilonova.

In nuclear fusion research, atomic data is necessary to analyze the amount and transport of impurities such as iron ions in high temperature plasmas. Daiji Kato, an Associate Professor at the National Institute for Fusion Science (NIFS) in Japan, is collaborating with Gediminas Gaigalas, Professor at Vilnius University in Lithuania, and colleagues in his group to advance research for constructing highly accurate atomic data by computation. Methods of computation that have been used for nuclear fusion research can be applied for atomic data to analyze the light of a kilonova.

The research team focused on singly-, doubly-, and triply-ionized neodymium ions which have the largest influence on the light of kilonovae. Neodymium ions can form more arrangements of constituent electrons than those of lighter elements such as iron, and provide a tremendous number of wavelengths for light absorption.

High precision computation of multiple-electron atoms is challenging due to difficulties in accounting for subtle correlations among electrons. In quantum mechanics, the correlation effects are represented by coherent superposition of different arrangements of constituent electrons. A virtually infinite number of arrangements are possible. The research team tested different sets of arrangements as to provide high accuracy data in realistic computation times, and succeeded in finding the optimal set of arrangements for each neodymium ion.

Computed energies of constituent electrons agree with NIST's world standard data within approximately 10% error in average, which is a much higher accuracy than has ever been achieved by the research team, and provide millions of wavelengths and probabilities for light absorption. An astronomer in the team, Masaomi Tanaka, Associate Professor at Tohoku University simulated the light of kilonovae using both the data with the highest precision and the data with a poor accuracy.

The influence of the difference in precision on the brightness of the light is evaluated quantitatively for the first time to be approximately 20% at most. This value is sufficiently small to increase confidence in analysis of the light of kilonovae. Thus, the results of this research will accelerate research to elucidate the origins of precious metals such as gold and platinum in our universe by using the atomic data of highest precision.

Research Report: "Extended Calculations of Energy Level and Transition Rates of Nd II-IV Ions for Application to Neutron Star Mergers"


Related Links
National Astronomical Observatory Of Japan
National Institutes of Natural Sciences
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
New reactor-liner alloy material offers strength, resilience
Los Alamos NM (SPX) Mar 11, 2019
A new tungsten-based alloy developed at Los Alamos National Laboratory can withstand unprecedented amounts of radiation without damage. Essential for extreme irradiation environments such as the interiors of magnetic fusion reactors, previously explored materials have thus far been hobbled by weakness against fracture, but this new alloy seems to defeat that problem. "This material showed outstanding radiation resistance when compared to pure nanocrystalline tungsten materials and other convention ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
CO2 emissions in developed economies fall due to decreasing fossil fuel and energy use

S.Africa imposes severe power cuts ahead of election

To conserve energy, AI clears up cloudy forecasts

Keeping the lights on during extreme cold snaps takes investments and upgrades

ENERGY TECH
Fusion science and astronomy collaboration enables investigation of the origin of heavy elements

Testing space batteries to destruction for cleaner skies

Powering devices - with a desk lamp?

Green Hydrogen to become affordable alternative by 2035, DNV GL study finds

ENERGY TECH
Improved hybrid models for multi-step wind speed forecasting

UK targets surge in offshore wind power

Ingeteam commissioned over 4GW of wind converters in 2018

Sulzer Schmid's new technology platform slashes cost of drone-based rotor blade inspections

ENERGY TECH
Mixed-cation perovskite solar cells in space

Light from an exotic crystal semiconductor could lead to better solar cells

Energise Africa launches UK crowd campaign to raise funds for solar in Africa

Improving solar cell efficiency with a bucket of water

ENERGY TECH
RWE looks to 2019 to complete transformation

Team solves a beta-decay puzzle with advanced nuclear models

Fukushima evacuees resist return as 'Reconstruction Olympics' near

Lithuania asks Belarus to convert nuclear plant to gas

ENERGY TECH
Engineered microbe may be key to producing plastic from plants

Turning algae into fuel

Capturing bacteria that eat and breathe electricity

Climate rewind: Scientists turn carbon dioxide back into coal

ENERGY TECH
China offers to help Venezuela restore power after vast blackout

Eni eyes turning non-recyclable waste to hydrogen

Venezuela's oil production plunged in February, OPEC says

Oil slick heading to French coast after cargo ship sinks

ENERGY TECH
Climate campaigners take France to court

Norway MPs want Nobel for student climate campaigner Greta

Finding the right 'dose' for solar geoengineering

Global youth climate strike could be 'milestone' moment









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.