Energy News  
ENERGY TECH
Development of high-time-resolution measurement of electron temperature and density in a magnetically confined plasma
by Staff Writers
Tokyo, Japan (SPX) Oct 19, 2022

Electron temperature and density measurement of plasma by Thomson scattering

Fusion power generation uses the energy generated by fusion reactions in high-temperature plasma. To achieve this, it is necessary to precisely measure the fast-changing high-temperature plasma to understand and control the physical phenomena.

A research group from the National Institute for Fusion Science in Japan and the University of Wisconsin in the United States have developed a high-performance laser device and succeeded in advancing a method to measure electron temperature and density in plasma at a world record speed of 20,000 times per second for almost 70 spatial points, more than 600 times faster than conventional methods. As a result, it is possible to study fast changes in plasma in detail, which has been difficult until now.

Galileo Galilei, a scientist active in Italy from the late 16th century, proposed the heliocentric theory through astronomical observations and scientific analysis based on them. The instrument that greatly contributed to his research was the telescope, the most advanced technology of the time. Galileo was convinced of the heliocentric theory, through detailed observation and study of the movement of stars, using this high-performance instrument. He also improved the performance of his telescope and discovered craters on the moon and the moons of Jupiter. It can be said that high-performance measurement technology was indispensable to Galileo's profound insights and new astronomical discoveries. Advanced measurement technology is similarly critical to fusion research.

In the Large Helical Device (LHD), research is conducted to confine the high-temperature plasma necessary for fusion power generation in a magnetic field. Plasma is a state in which electrons and ions are scattered and moving around, and the higher the temperature, the faster they move. To measure the temperature of these electrons, a technique called "Thomson scattering measurement" is used.

In this technique, a powerful laser beam is injected into the plasma and the "scattered light" generated when it strikes the electrons is measured. The scattered light changes to a different color to the incident laser light, due to the Doppler effect. Since this color change corresponds to the speed of the electrons, we can determine their temperature from the color of the scattered light and the electron density from its brightness.

The electron temperature and density of a plasma vary from place to place and change extremely fast with time. In order to accurately determine the plasma state, the Thomson scattering measurement system must have the spatial resolution to measure the spatial distribution of electron temperature and density as finely as possible, and the temporal resolution to measure changes in time as quickly as possible. The LHD Thomson scattering system simultaneously measures electron temperature and density at 144 points in the plasma.

This is the world's top-level spatial resolution. Time variation is measured by repeatedly injecting pulses of laser light into the plasma, but previously the time resolution of the LHD Thomson scattering system was only 30 times per second. To deeply understand the physical phenomena we have seen and to make new discoveries, it has been necessary to improve the time resolution. In particular, faster measurement speeds enable detailed measurements of transient phenomena that occur in plasmas, thus providing a powerful method for understanding and controlling such phenomena.

Associate Professor Ryo Yasuhara, Assistant Professor Hisamichi Funaba, and Assistant Professor Hiyori Uehara of the National Institute for Fusion Science, together with Professor Daniel J. den Hartog of the University of Wisconsin, have developed a Thomson scattering measurement system capable of measuring at up to 20 kHz (20,000 times per second). The heart of the new measurement system is a laser device that can generate intense light many times over at high speed.

In this laser system, a laser medium (in the case of this research, a solid medium) is given optical energy (excitation light) to generate a powerful laser beam. However, because the laser beam generation efficiency is not 100%, the energy that is not converted into laser light becomes heat. Therefore, heat generation in the solid medium becomes a problem at high laser repetition rates. When a temperature difference is created in the medium due to heat generation, a thermo-optic effect appears, in which light cannot travel straight ahead because the refractive index of light differs from place to place. The thermo-optic effect can cause a reduction in the output power of the laser light and damage to the solid medium.

The research group avoided the problem of thermo-optic effects by applying energy to the medium and extracting the laser pulse from the medium multiple times in the extremely short time period of 5 ms, before a temperature difference occurred in the medium. As a result, they succeeded in developing a laser capable of a high-speed repetition rate of 20 kHz.

This high-performance laser, a newly developed high-speed data acquisition system, and advanced analysis methods developed so far have enabled them to achieve a Thomson scattering measurement system capable of calculating at a world record speed of 20 kHz, more than 600 times faster than conventional systems.

Associate Professor Yasuhara says, "Just as Galileo achieved important astronomical discoveries with the use of a high-performance telescope, I would like to further develop fusion research by introducing fast electron temperature and density profiles. We expect that this will lead to a more precise understanding of physical phenomena that have been difficult to observe in the past, such as fueling into plasmas and transient phenomena caused by turbulence."

A paper summarizing some of the results of this research was published online in Scientific Reports on September 6. The professor will also give an oral presentation at the Laser Congress 2022 (hosted by Optica), an international conference on advanced laser research, to be held in Barcelona, Spain, from December 11 to 15, 2022.

Research Report:Electron temperature and density measurement by Thomson scattering with a high repetition rate laser of 20 kHz on LHD


Related Links
National Institute for Fusion Science
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
DOE announces $47 million for research at tokamak and spherical tokamak facilities
Washington DC (SPX) Oct 17, 2022
the U.S. Department of Energy (DOE) awarded $47 million to U.S. scientists conducting experimental research in fusion energy science at tokamak and spherical tokamak facilities in the U.S. and around the globe. The awards support research that aims to close gaps in the science and technology basis for the tokamak approach to fusion energy. These awards will help support the Biden Administration's decadal vision to accelerate fusion as a clean energy technology. Fusion energy research seeks t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Fossil fuel CO2 emissions up slightly in 2022: IEA

Spain minister says EU energy crisis measures too 'timid'

Fact check: Do climate policies raise energy bills?

French climate activists target store lights in Paris night raids

ENERGY TECH
PPPL physicist wins awards for two fusion projects

Quino Energy aims for grid-scale battery infrastructure

Development of high-time-resolution measurement of electron temperature and density in a magnetically confined plasma

DOE announces $47 million for research at tokamak and spherical tokamak facilities

ENERGY TECH
US to offer leases for Pacific offshore wind energy platforms

Wind turbine maker Siemens Gamesa plans 2,900 jobs cuts

Spain, UK making headway on renewable energy: report

Europe and China operate the largest number of offshore wind farms

ENERGY TECH
New covalent organic framework material accelerates the solar fuel generation

New study finds ways to improve light absorption in perovskite silicon tandem solar cells

Momentus completes solar array test campaign ahead of next mission

Geoforce offers two new solar-powered rugged asset trackers to Australia industries

ENERGY TECH
French unions agree to lift strike at nuclear plants

'About 50' Zaporizhzhia nuclear plant staff in Russian detention

Damage found at Finland nuclear plant, threatening delays

Framatome to extend outage services to PSEG for long-term plant operations

ENERGY TECH
Engineering duckweed to produce oil for biofuels, bioproducts

On-site reactors could affordably turn CO2 into valuable chemicals

Onshore algae farms could be 'breadbasket for Global South'

Processing waste biomass to reduce airborne emissions

ENERGY TECH
Iraq arrests businessman suspected in theft of $2.5bn from tax agency

Singapore targets net zero by 2050, eyes hydrogen power

Blue hydrogen and the world's energy systems

Dutch to quit 52-nation fossil fuel deal over climate concerns

ENERGY TECH
National climate science satellite mission co-led by U of T secures more than $200M

German youths take climate case against govt to European court

Climate protesters scale major UK bridge

UK climate activists in court over Van Gogh protest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.