Energy News  
ENERGY TECH
Design of the W7-X fusion device enables it to overcome obstacles
by Staff Writers
Plainsboro NJ (SPX) Feb 27, 2020

Recent research on the W7-X aimed to determine whether design of the advanced facility could temper the leakage of heat and particles from the core of the plasma that has long slowed the advancement of stellarators. "That is one of the most important questions in the development of stellarator fusion devices," said PPPL physicist Novimir Pablant, lead author of a paper describing the results in Nuclear Fusion.

A key hurdle facing fusion devices called stellarators - twisty facilities that seek to harness on Earth the fusion reactions that power the sun and stars - has been their limited ability to maintain the heat and performance of the plasma that fuels those reactions.

Now collaborative research by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and the Max Planck Institute for Plasma Physics in Greifswald, Germany, have found that the Wendelstein 7-X (W7-X) facility in Greifswald, the largest and most advanced stellarator ever built, has demonstrated a key step in overcoming this problem.

Cutting-edge facility
The cutting-edge facility, built and housed at the Max Planck Institute for Plasma Physics with PPPL as the leading U.S. collaborator, is designed to improve the performance and stability of the plasma - the hot, charged state of matter composed of free electrons and atomic nuclei, or ions, that makes up 99 percent of the visible universe.

Fusion reactions fuse ions to release massive amounts of energy - the process that scientists are seeking to create and control on Earth to produce safe, clean and virtually limitless power to generate electricity for all humankind.

Recent research on the W7-X aimed to determine whether design of the advanced facility could temper the leakage of heat and particles from the core of the plasma that has long slowed the advancement of stellarators. "That is one of the most important questions in the development of stellarator fusion devices," said PPPL physicist Novimir Pablant, lead author of a paper describing the results in Nuclear Fusion.

His work validates an important aspect of the findings. The research, combined with the findings of an accepted paper by Max Planck physicist Sergey Bozhenkov and a paper under review by physicist Craig Beidler of the institute, demonstrates that the advanced design does in fact moderate the leakage.

"Our results showed that we had a first glimpse of our targeted physics regimes much earlier than expected," said Max Planck physicist Andreas Dinklage. "I recall my excitement seeing Novi's raw data in the control room right after the shot. I immediately realized it was one of the rare moments in a scientist's life when the evidence you measure shows that you're following the right path. But even now there's still a long way to go."

Common problem
The leakage, called "transport," is a common problem for stellarators and more widely used fusion devices called tokamaks that have traditionally better coped with the problem. Two conditions give rise to transport in these facilities, which confine the plasma in magnetic fields that the particles orbit.

These conditions are:

+ Turbulence. The unruly swirling and eddies of plasma can trigger transport;

+ Collisions and orbits. The particles that orbit magnetic field lines can often collide, knocking them out of their orbits and causing what physicists call "neoclassical transport."

Designers of the W7-X stellarator sought to reduce neoclassical transport by carefully shaping the complex, three-dimensional magnetic coils that create the confining magnetic field. To test the effectiveness of the design, researchers investigated complementary aspects of it.

Pablant found that measurements of the behavior of plasma in previous W7-X experiments agreed well with the predictions of a code developed by Matt Landreman of the University of Maryland that parallels those the designers used to shape the twisting W7-X coils. Bozhenov took a detailed look at the experiments and Beidler traced control of the leakage to the advanced design of the stellarator.

"This research validates predictions for how well the optimized design of the W7-X reduces neoclassical transport," Pablant said. By comparison, he added, "Un-optimized stellarators have done very poorly" in controlling the problem.

Further benefit
A further benefit of the optimized design is that it reveals where most of the transport in the W7-X stellarator now comes from. "This allows us to determine how much turbulent transport is going on in the core of the plasma," Pablant said. "The research marks the first step in showing that high-performance stellarator designs such as W-7X are an attractive way to produce a clean and safe fusion reactor."

Research paper


Related Links
PRinceton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Utilizing relativistic effects for laser fusion
Osaka, Japan (SPX) Jan 08, 2020
A team of researchers at Osaka University has investigated a new method for generating nuclear fusion power, showing that the relativistic effect of ultra-intense laser light improves upon current "fast ignition" methods in laser-fusion research to heat the fuel long enough to generate electrical power. These findings could provide a spark for laser fusion, ushering in a new era of carbonless energy production. Current nuclear power uses the fission of heavy isotopes, such as uranium, into lighter ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Eastern EU states opposed to 2050 zero-emissions goal

Coronavirus outbreak slashes China carbon emissions: study

Extreme weather to overload urban power grids, study shows

EU chief pleads to save green deal in budget holed by Brexit

ENERGY TECH
Cobalt supply can meet demand for electric vehicle and electronics batteries

Machine learning could supercharge battery development for electric vehicles

KIST develops high-capacity EV battery materials that double driving range

EU wants battery autonomy, but first it needs graphite

ENERGY TECH
Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

ENERGY TECH
'Flapping wings' powered by the sun

Scientists develop safer lead-based perovskite solar cell

Comcast completes solar system installation for Washington DC facility

Corning and Energy Materials Corporation Sign Joint Development Agreement

ENERGY TECH
Framatome opens new research and operations center and expands Intercontrole in Cadarache, France

France begins shutting down oldest nuclear plant

VTT develops a Small Modular Reactor for district heating

Framatome teams with General Atomics to advance PROtect enhanced accident tolerant fuel technologies

ENERGY TECH
Using open-source software to analyze economics of biofuels, bioproducts

Protein-powered device generates electricity from moisture in the air

Catalyst recycles greenhouse gases into hydrogen gas, fuel, other chemicals

From petroleum to wood in the chemical industry: cost-efficient and more sustainable

ENERGY TECH
Canada's Teck withdraws controversial oil sands project

Firm scraps bid to drill off pristine Australian coast

War-ravaged South Sudan at a glance

Dutch to shut quake-hit Groningen gas output by 2022

ENERGY TECH
UN talks struggle to stave off climate chaos

Scientists greatly underestimating methane emitted by humans

Every child under 'immediate threat' from climate, poor diet: UN

Bezos launches $10 bn fund to combat climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.