Energy News  
ENERGY TECH
Machine learning could supercharge battery development for electric vehicles
by Staff Writers
Stanford CA (SPX) Feb 24, 2020

The research team included, from left, Stanford Professor William Chueh, Toyota Research Institute scientist Muratahan Aykol, Stanford PhD student Aditya Grover, Stanford PhD alumnus Peter Attia, Stanford Professor Stefano Ermon and TRI scientist Patrick Herring.

Battery performance can make or break the electric vehicle experience, from driving range to charging time to the lifetime of the car. Now, artificial intelligence has made dreams like recharging an EV in the time it takes to stop at a gas station a more likely reality, and could help improve other aspects of battery technology.

For decades, advances in electric vehicle batteries have been limited by a major bottleneck: evaluation times. At every stage of the battery development process, new technologies must be tested for months or even years to determine how long they will last. But now, a team led by Stanford professors Stefano Ermon and William Chueh has developed a machine learning-based method that slashes these testing times by 98 percent. Although the group tested their method on battery charge speed, they said it can be applied to numerous other parts of the battery development pipeline and even to non-energy technologies.

"In battery testing, you have to try a massive number of things, because the performance you get will vary drastically," said Ermon, an assistant professor of computer science. "With AI, we're able to quickly identify the most promising approaches and cut out a lot of unnecessary experiments."

The study, published by Nature on Feb. 19, was part of a larger collaboration among scientists from Stanford, MIT and the Toyota Research Institute that bridges foundational academic research and real-world industry applications. The goal: finding the best method for charging an EV battery in 10 minutes that maximizes the battery's overall lifetime. The researchers wrote a program that, based on only a few charging cycles, predicted how batteries would respond to different charging approaches. The software also decided in real time what charging approaches to focus on or ignore. By reducing both the length and number of trials, the researchers cut the testing process from almost two years to 16 days.

"We figured out how to greatly accelerate the testing process for extreme fast charging," said Peter Attia, who co-led the study while he was a graduate student. "What's really exciting, though, is the method. We can apply this approach to many other problems that, right now, are holding back battery development for months or years."

A smarter approach to battery testing
Designing ultra-fast-charging batteries is a major challenge, mainly because it is difficult to make them last. The intensity of the faster charge puts greater strain on the battery, which often causes it to fail early. To prevent this damage to the battery pack, a component that accounts for a large chunk of an electric car's total cost, battery engineers must test an exhaustive series of charging methods to find the ones that work best.

The new research sought to optimize this process. At the outset, the team saw that fast-charging optimization amounted to many trial-and-error tests - something that is inefficient for humans, but the perfect problem for a machine.

"Machine learning is trial-and-error, but in a smarter way," said Aditya Grover, a graduate student in computer science who co-led the study. "Computers are far better than us at figuring out when to explore - try new and different approaches - and when to exploit, or zero in, on the most promising ones."

The team used this power to their advantage in two key ways. First, they used it to reduce the time per cycling experiment. In a previous study, the researchers found that instead of charging and recharging every battery until it failed - the usual way of testing a battery's lifetime -they could predict how long a battery would last after only its first 100 charging cycles. This is because the machine learning system, after being trained on a few batteries cycled to failure, could find patterns in the early data that presaged how long a battery would last.

Second, machine learning reduced the number of methods they had to test. Instead of testing every possible charging method equally, or relying on intuition, the computer learned from its experiences to quickly find the best protocols to test.

By testing fewer methods for fewer cycles, the study's authors quickly found an optimal ultra-fast-charging protocol for their battery. In addition to dramatically speeding up the testing process, the computer's solution was also better - and much more unusual - than what a battery scientist would likely have devised, said Ermon.

"It gave us this surprisingly simple charging protocol - something we didn't expect," Ermon said. Instead of charging at the highest current at the beginning of the charge, the algorithm's solution uses the highest current in the middle of the charge. "That's the difference between a human and a machine: The machine is not biased by human intuition, which is powerful but sometimes misleading."

Wider applications
The researchers said their approach could accelerate nearly every piece of the battery development pipeline: from designing the chemistry of a battery to determining its size and shape, to finding better systems for manufacturing and storage. This would have broad implications not only for electric vehicles but for other types of energy storage, a key requirement for making the switch to wind and solar power on a global scale.

"This is a new way of doing battery development," said Patrick Herring, co-author of the study and a scientist at the Toyota Research Institute. "Having data that you can share among a large number of people in academia and industry, and that is automatically analyzed, enables much faster innovation."

The study's machine learning and data collection system will be made available for future battery scientists to freely use, Herring added. By using this system to optimize other parts of the process with machine learning, battery development - and the arrival of newer, better technologies - could accelerate by an order of magnitude or more, he said.

The potential of the study's method extends even beyond the world of batteries, Ermon said. Other big data testing problems, from drug development to optimizing the performance of X-rays and lasers, could also be revolutionized by the use of machine learning optimization. And ultimately, he said, it could even help to optimize one of the most fundamental processes of all.

"The bigger hope is to help the process of scientific discovery itself," Ermon said. "We're asking: Can we design these methods to come up with hypotheses automatically? Can they help us extract knowledge that humans could not? As we get better and better algorithms, we hope the whole scientific discovery process may drastically speed up."

Research paper


Related Links
Stanford University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Ultrasound device boosts charge, run times in lithium metal batteries
Washington DC (UPI) Feb 18, 2020
Lithium metal batteries could soon be ready for commercialization thanks to the development of a new ultrasound device. The technology, developed by engineers at the University of California San Diego, improves the charge and run times of the batteries. Lithium metal batteries, LMBs, boast twice the capacity of today's best lithium ion batteries, but their short lifespans have prevented the technology's widespread commercial adoption. LMBs are prone to the formation of dendrites, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Coronavirus outbreak slashes China carbon emissions: study

Extreme weather to overload urban power grids, study shows

Eastern EU states opposed to 2050 zero-emissions goal

EU chief pleads to save green deal in budget holed by Brexit

ENERGY TECH
Iodide salts stabilize biocatalysts for fuel cells

Ultrasound device boosts charge, run times in lithium metal batteries

Movement of a liquid droplet generates over 5 volts of electricity

Something from nothing: Using waste heat to power electronics

ENERGY TECH
Alphabet cuts cord on power-generating kite business

Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

Britain's green energy sector brightens: survey data

ENERGY TECH
Smartass Meters Make IOUs for California IOUs by Taking Solar Power But Not Metering It

Geronimo Energy and Basin Electric Power Cooperative Announce Power Purchase Agreement for 128 MW South Dakota Solar Project

Gantner contracted for largest Solar Power Plant in the Netherlands

Prodiel to install 500 MW at two photovoltaic plants in Spain for Solarcentury

ENERGY TECH
UAE issues licence for first Arab nuclear power plant

Framatome signs service contracts with Finnish utility TVO to support long-term operation of Olkiluoto 3 EPR

UAE loads fuel rods at Arab world's first nuclear plant

VTT and its partners are developing nuclear power plant decommissioning into a business

ENERGY TECH
Catalyst recycles greenhouse gases into hydrogen gas, fuel, other chemicals

Protein-powered device generates electricity from moisture in the air

From petroleum to wood in the chemical industry: cost-efficient and more sustainable

Drilling a 3,000 meters deep well

ENERGY TECH
Sudan police fire tear gas, disperse protests over soldiers' retirement

Fossil fuel methane emissions 'vastly underestimated'

Libya's UN-recognised government withdraws from Geneva talks

Maduro says 'not afraid of military combat' in Venezuela

ENERGY TECH
Every child under 'immediate threat' from climate, poor diet: UN

UN talks struggle to stave off climate chaos

Bezos launches $10 bn fund to combat climate change

UN's Guterres calls for 'transformational change' on climate









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.