Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Brighter energy-saving flat panels using carbon nanotubes
by Staff Writers
Washington DC (SPX) Oct 17, 2014


This image shows a planar light source device from the front. Image courtesy N.Shimoi/Tohoku University.

Even as the 2014 Nobel Prize in Physics has enshrined light emitting diodes (LEDs) as the single most significant and disruptive energy-efficient lighting solution of today, scientists around the world continue unabated to search for the even-better-bulbs of tomorrow.

Enter carbon electronics.

Electronics based on carbon, especially carbon nanotubes (CNTs), are emerging as successors to silicon for making semiconductor materials. And they may enable a new generation of brighter, low-power, low-cost lighting devices that could challenge the dominance of light-emitting diodes (LEDs) in the future and help meet society's ever-escalating demand for greener bulbs.

Scientists from Tohoku University in Japan have developed a new type of energy-efficient flat light source based on carbon nanotubes with very low power consumption of around 0.1 Watt for every hour's operation--about a hundred times lower than that of an LED.

In the journal Review of Scientific Instruments, from AIP publishing, the researchers detail the fabrication and optimization of the device, which is based on a phosphor screen and single-walled carbon nanotubes as electrodes in a diode structure. You can think of it as a field of tungsten filaments shrunk to microscopic proportions.

They assembled the device from a mixture liquid containing highly crystalline single-walled carbon nanotubes dispersed in an organic solvent mixed with a soap-like chemical known as a surfactant. Then, they "painted" the mixture onto the positive electrode or cathode, and scratched the surface with sandpaper to form a light panel capable of producing a large, stable and homogenous emission current with low energy consumption.

"Our simple 'diode' panel could obtain high brightness efficiency of 60 Lumen per Watt, which holds excellent potential for a lighting device with low power consumption," said Norihiro Shimoi, the lead researcher and an associate professor of environmental studies at the Tohoku University.

Brightness efficiency tells people how much light is being produced by a lighting source when consuming a unit amount of electric power, which is an important index to compare the energy-efficiency of different lighting devices, Shimoi said. For instance, LEDs can produce 100s Lumen per Watt and OLEDs (organic LEDs) around 40.

Although the device has a diode-like structure, its light-emitting system is not based on a diode system, which are made from layers of semiconductors, materials that act like a cross between a conductor and an insulator, the electrical properties of which can be controlled with the addition of impurities called dopants.

The new devices have luminescence systems that function more like cathode ray tubes, with carbon nanotubes acting as cathodes, and a phosphor screen in a vacuum cavity acting as the anode.

Under a strong electric field, the cathode emits tight, high-speed beams of electrons through its sharp nanotube tips -- a phenomenon called field emission. The electrons then fly through the vacuum in the cavity, and hit the phosphor screen into glowing.

"We have found that a cathode with highly crystalline single-walled carbon nanotubes and an anode with the improved phosphor screen in our diode structure obtained no flicker field emission current and good brightness homogeneity," Shimoi said.

Field emission electron sources catch scientists' attention due to its ability to provide intense electron beams that are about a thousand times denser than conventional thermionic cathode (like filaments in an incandescent light bulb). That means field emission sources require much less power to operate and produce a much more directional and easily controllable stream of electrons.

In recent years, carbon nanotubes have emerged as a promising material of electron field emitters, owing to their nano-scale needle shape and extraordinary properties of chemical stability, thermal conductivity and mechanical strength.

Highly crystalline single-walled carbon nanotubes (HCSWCNT) have nearly zero defects in the carbon network on the surface, Shimoi explained.

"The resistance of cathode electrode with highly crystalline single-walled carbon nanotube is very low. Thus, the new flat-panel device has smaller energy loss compared with other current lighting devices, which can be used to make energy-efficient cathodes that with low power consumption."

"Many researchers have attempted to construct light sources with carbon nanotubes as field emitter," Shimoi said. "But nobody has developed an equivalent and simpler lighting device."

Considering the major step for device manufacture--the wet coating process is a low-cost but stable process to fabricate large-area and uniformly thin films, the flat-plane emission device has the potential to provide a new approach to lighting in people's life style and reduce carbon dioxide emissions on the earth, Shimoi said.

"Planar light source using a phosphor screen with single-walled carbon nanotubes as field emitters," is authored by Sharon Bahena-Garrido, Norihiro Shimoi, Daisuke Abe, Toshimasa Hojo, Yasumitsu Tanaka, Kazuyuki Tohji. It will be published in the journal Review of Scientific Instruments on October 14, 2014 (DOI: 10.1063/1.4895913).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Revving up fluorescence for superfast LEDs
Durham NC (SPX) Oct 15, 2014
Duke University researchers have made fluorescent molecules emit photons of light 1,000 times faster than normal - setting a speed record and making an important step toward realizing superfast light emitting diodes (LEDs) and quantum cryptography. This year's Nobel Prize in physics was awarded for the discovery of how to make blue LEDs, allowing everything from more efficient light bulbs ... read more


ENERGY TECH
Energy Prices and Business Decision-Making in Canada

Strong partnership for the energy transition

Balancing renewable energy costs

Japanese company proposes coal power plant in Myanmar

ENERGY TECH
Catalysts for hydrogen fuel cells cab be synthesized in microwave oven

Brighter energy-saving flat panels using carbon nanotubes

Physicists build reversible laser tractor beam

A brighter design emerges for low-cost, 'greener' LED light bulbs

ENERGY TECH
U.S. states get federal backing for clean-energy programs

Study recommends ongoing assessment of offshore wind farms

SeaRoc and HSEQ Experts join forces to support offshore wind projects in Europe

RWE says Nordsee Ost wind farm off German coast nearly ready

ENERGY TECH
EDF Buys Canadian Solar Modules For Catalina Solar 2 Project

Stem and Kyocera Launch Energy Storage For Commercial Users

Trina Solar's Monocrystalline Honey Module Sets New World Record

SunEdison Slashes Costs With High Efficiency Module Tech

ENERGY TECH
AREVA introduces SIBAG, the first "serious game" simulator for training nuclear operators

Vattenfall seeks 4.7 bn euros for German nuclear phase-out: government sources

Taiwan reveals new plans to send nuclear waste abroad

France and South Africa sign nuclear energy agreement

ENERGY TECH
New Discovery Will Enhance yield and quality of Cereal and Bioenergy Crops

New ProMOS Bio Software Guides Biogas Plants into the Future

U.S. funding projects meant to make biofuels competitive

Balancing birds and biofuels: Grasslands support more species than cornfields

ENERGY TECH
Work completed on satellite launch center in Hainan

China to launch new marine surveillance satellites in 2019

China Successfully Orbits Experimental Satellite

China's first space lab in operation for over 1000 days

ENERGY TECH
Climate talks told to ease rifts as heat busts record

Sheltering habits help sharks cope with acid oceans

Can big data make sense of climate change?

Rising sea levels of 1.8 meters in worst-case scenario




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.