Energy News  
ENERGY TECH
Graphene girders doubles life of lithium batteries
by Staff Writers
Warwick UK (SPX) Feb 05, 2018

This is a cross section of the Silicon and FLG together in an anode.

New research led by WMG, at the University of Warwick has found an effective approach to replacing graphite in the anodes of lithium-ion batteries using silicon, by reinforcing the anode's structure with graphene girders. This could more than double the life of rechargeable lithium-ion based batteries and also increase the capacity delivered by those batteries.

Graphite has been the default choice of active material for anodes in lithium--ion batteries since their original launch by Sony but researchers and manufacturers have long sought a way to replace graphite with silicon, as it is an abundantly available element with ten times the gravimetric energy density of graphite.

Unfortunately, silicon has several other performance issues that continue to limit its commercial exploitation. Due to its volume expansion upon lithiation silicon particles can electrochemically agglomerate in ways that impede further charge-discharge efficiency over time.

Silicon is also not intrinsically elastic enough to cope with the strain of lithiation when it is repeatedly charged, leading to cracking, pulverisation and rapid physical degradation of the anode's composite microstructure. This contributes significantly to capacity fade, along with degradation events that occur on the counter electrode - the cathode. To use the mobile phones as an example, this is why we have to charge our phones for a longer and longer time, and it is also why they don't hold their charge for as long as when they are new.

Numerous approaches have attempted to overcome these issues. The use of nano-sized / structured silicon particles with micron-sized graphene for example, but this has not proved satisfactory. Using nano-sized silicon particles dramatically increases the amount of reactive surface available.

This leads to much more lithium being deposited on the silicon during the first charge cycle forming a solid-electrolyte interphase barrier between the silicon and the electrolyte and thus greatly reducing the lithium inventory and thus the battery's useful lifetime. This layer also continues to grow on silicon and so the lithium loss becomes continuous. Other methods of incorporating other materials such as graphene at different sizes have been deemed impractical to then progress to large-scale manufacture.

However new research, led by Dr Melanie Loveridge in WMG at the University of Warwick, has discovered, and tested, a new anode mixture of silicon and a form of chemically modified graphene which could resolve these issues and create viable silicon anode lithium-ion batteries.

Such an approach could be practically manufactured on an industrial scale and without the need to resort to nano sizing of silicon and its associated problems. The new research has just been published on Tuesday 23rd January 2018) in Scientific Reports in a paper entitled Phase-related Impedance Studies on Silicon-Few Layer Graphene (FLG) Composite Electrode Systems.

Graphene is of course a single, one atom thick layer of the mineral graphite (an allotrope of carbon). However, it also possible to separate and manipulate a few connected layers of graphene giving a material researchers refer to as few-layer graphene (FLG).

Previous research has tested the use of FLG with nano-sized silicon but this new study has found that FLG can also dramatically improve the performance of larger micron-sized silicon particles when used in an anode. So much so that this mixture could significantly extend the life of lithium-ion batteries and also offer increased power capability.

The researchers created anodes that were a mixture of 60% micro silicon particles, 16% FLG, 14% Sodium/Polyacrylic acid, and 10% carbon additives, and then examined the performance (and the changes in structure of the material) over a 100 charge-discharge cycles.

Dr Melanie Loveridge, who led the research and is a Senior Research Fellow in WMG at the University of Warwick said: "The flakes of FLG were mixed throughout the anode and acted like a set of strong, but relatively elastic, girders. These flakes of FLG increased the resilience and elasticity of the material greatly reducing the damage caused by the physical expansion of the silicon during lithiation. The graphene enhances the long range electrical conductivity of the anode and maintains a low resistance in a structurally stable composite."

"More importantly, these FLG flakes can also prove very effective at preserving the degree of separation between the silicon particles. Each battery charge cycle increases the chance that silicon particles become electrochemically welded to each other.

This increased agglomeration increasingly reduces and restricts the electrolyte access to all the particles in the battery and impedes effective diffusion of lithium ions, which of course degrades the battery's life and power output. The presence of FLG in the mixture tested by the WMG University of Warwick led researchers to hypothesize that this phenomenon is highly effective in mitigating electrochemical silicon fusion. This has been supported by systematic investigations"

The WMG research team have already begun further work on this technological advance which will include further study and research as part of the graphene spearhead two year project led by Varta Micro-innovations, WMG at the University of Warwick is a partner along with Cambridge University, CIC, Lithops and IIT (Italian Institute of Technology).

The main goal of that project is to advance in pre-industrial production of silicon/graphene composites and their subsequent processing into lithium-ion batteries for high-energy and high-power applications. As part of that project WMG at Warwick will be optimising the electrode research, scale up and pouch cell manufacture of the optimised Li-ion batteries.

The paper "Phase-related Impedance Studies on Silicon-Few Layer Graphene (FLG) Composite Electrode Systems" is published in Scientific Reports. The authors are Melanie J. Loveridge, Qianye Huang, Ronny Genieser, Michael J. Lain, and Rohit Bhagat (all from WMG at the University of Warwick)


Related Links
University of Warwick
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Making fuel cells for a fraction of the cost
Riverside CA (SPX) Feb 03, 2018
Fuel cells have the potential to be a clean and efficient way to run cars, computers, and power stations, but the cost of producing them is limiting their use. That's because a key component of the most common fuel cells is a catalyst made from the precious metal platinum. In a paper published in Small, researchers at the University of California, Riverside, describe the development of an inexpensive, efficient catalyst material for a type of fuel cell called a polymer electrolyte membrane fuel ce ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
State utilities called to pass U.S. tax benefits to consumers

Magnetic liquids improve energy efficiency of buildings

US energy watchdog rejects plan to subsidize coal, nuclear sectors

U.S. utility regulator ponders grid reliability

ENERGY TECH
Coupling experiments to theory to build a better battery

20 percent more trees in megacities would mean cleaner air and water, lower carbon and energy use

Graphene girders doubles life of lithium batteries

Making fuel cells for a fraction of the cost

ENERGY TECH
Ireland pushing for greener economy

China wind turbine-maker guilty of stealing US trade secrets

Scotland sets up $83 million low-carbon fund

German offshore wind farm closer to powering mainland

ENERGY TECH
Kyocera TCL Solar completes 21MW solar plant on repurposed land

Solar heat could make power and water for Namibia

New discovery could improve organic solar cell performance

Less than half of EU members meet 2020 renewable targets

ENERGY TECH
Thorium reactors may dispose of enormous amounts of weapons-grade plutonium

Framatome continues ramping up production at its Le Creusot site

USA: Framatome to acquire Instrumentation and Control nuclear business of Schneider Electric

Framatome nuclear fuel contract with CNNC

ENERGY TECH
Bio-renewable process could help 'green' plastic

To maximize sugarcane harvesting, use the right blade

The making of biorelevant nanomaterials

Malaysia protest against EU push to ban palm oil in biofuels

ENERGY TECH
Method of petroleum extraction based on injections of nanosized metal oxide colloids

Royal Dutch Shell sees big profits, but lower cash flow

Dutch farmers protest fracking as govt set to cut gas output

Offshore Asia-Pacific not prepared for decommissioning

ENERGY TECH
NETs will not compensate for inadequate climate change mitigation efforts: EASAC report

France says it fell short on greenhouse gas emissions

How to reduce heat extremes by 3C

Latin Americans more concerned about climate change than US, Canada









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.