Energy News  
ENERGY TECH
A novel voltage peak in the metal nanowire-superconductor hybrid structure
by Staff Writers
Beijing, China (SPX) May 03, 2018

Non-local transport measurements reveal a novel voltage peak at superconducting transition temperature in gold nanowire with superconducting W electrodes. The voltage peak appears when cooling the sample across Tc, while the peak turns into dip in the warming process. Upper inset, a scanning electron microscope image of Au nanowire contacted by two superconducting W compound electrodes in the middle and two normal Pt electrodes at the ends. Lower inset, configuration of electrodes. In fact, the detected peak is irrelevant to the current, and similar phenomena can be observed even in the absence of current.

Superconductivity, known as a quantum state with zero resistance and perfect diamagnetism, has attracted great attention in physical science. Due to the quantum size effect, low dimensional superconducting systems can exhibit novel behaviors different from bulk situation.

Particularly, the investigations on strong spin-orbit coupling or ferromagnetic nanowires with superconducting contacts have become a research highlight in connection with the exploration of topological superconductivity and topological quantum computation. Dr. Jian Wang and Prof. Moses Chan have made a series of progresses in inducing superconductivity in nanowires.

For instance, they have realized the proximity induced superconductivity in spin-orbit coupling Au and ferromagnetic Co nanowires (Phys. Rev. Lett. 102, 247003 (2009); Nat. Phys. 6, 389 (2010)), which lay the foundation for further investigation on topological superconductivity.

In addition, Dr. Jian Wang, Prof. Nitin Samarth, Prof. Moses Chan and other collaborators detected the superconductivity in a topological insulator nanostrip via the superconducting proximity effect (Phys. Rev. B 84, 165120 (2011)). In that work, the authors reported a zero bias conductance peak and vortex induced quantum oscillations, which may be the evidences for topological superconductivity.

Recently, Prof. Jian Wang at Peking University, in collaboration with Prof. QingFeng Sun at Peking University and Prof. Moses Chan at Penn State University, observed a novel voltage signal in the hybrid nanowire structure. Normally, for a superconductor-normal material junction, the voltage across the junction should be zero when the current is not applied.

However, in Au nanowire contacted by superconducting W electrodes, a voltage peak appears at time scale of one minute when cooling the system across the proximity induced superconducting transition temperature (Tc), while the peak turns into dip in the warming process (see the Figure below). The formation of voltage peak is irrelevant to the applied current, and the peak amplitude is proportional to temperature scanning rate. These characteristics distinguish the observed voltage signal from earlier works.

By using Ginzburg-Landau model, the rise of the peak can be understood as a result of the emergence of Cooper pairs with relatively lower free energy in the W electrode; meanwhile the diffusion of Cooper pairs and quasiparticles from the W electrode to the Au nanowire suppresses the rising of the voltage and results in a voltage drop. The observation of voltage peak may benefit from the nanoscale contact area in hybrid nanowire structure and relatively long diffusion time.

The detection of the voltage peak offers direct evidence that the free energy of a system would decrease after entering the superconducting state.

Moreover, similar voltage signal was also detected in Pt nanostrip contacted by superconducting electrodes, demonstrating the universality of the effect. Since the voltage signal appears at Tc and the applied current is not necessary, our finding offers a new way to detect superconductivity in nanostructures without current induced damage or dissipation.

This work has been recently published in Science China-Physics, Mechanics and Astronomy (2018) with the title of "Novel voltage signal at proximity-induced superconducting transition temperature in gold nanowires". Prof. Jian Wang at Peking University and Prof. Moses Chan at Penn State University are corresponding authors of this paper.

Jian Wang, JunXiong Tang, ZiQiao Wang, Yi Sun, QingFeng Sun, and Moses H. W. Chan, Novel voltage signal at proximity-induced superconducting transition temperature in gold nanowires, Sci. China-Phys. Mech. Astron. 61, 087411 (2018),


Related Links
Science China Press
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Topological insulator 'flips' for superconductivity
Chicago IL (SPX) May 01, 2018
A groundbreaking sample preparation technique has enabled researchers at the University of Illinois at Urbana-Champaign and the University of Tokyo to perform the most controlled and sensitive study to date of a topological insulator (TI) closely coupled to a superconductor (SC). The scientists observed the superconducting proximity effect - induced superconductivity in the TI due to its proximity to the SC - and measured its relationship to temperature and the thickness of the TI. TIs with induce ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Carbon taxes can be both fair and effective, study shows

Trump rolls back Obama-era fuel efficiency rules

Lights out for world landmarks in nod to nature

Puerto Rico power grid snaps, nearly 1 million in the dark

ENERGY TECH
Chemists develop MRI-like technique to detect what ails batteries

A novel voltage peak in the metal nanowire-superconductor hybrid structure

Making new layered superconductors using high entropy alloys

Antimatter study to benefit from recipe for ten-fold spatial compression of plasma

ENERGY TECH
German utility E.ON sees renewable sector growth

Germany's E.ON wants even bigger wind footprint

US renewables firm takes Poland to court over U-turn on windmills

New control strategy helps reap maximum power from wind farms

ENERGY TECH
Asian markets have renewable energy edge

Low-carbon energy transition requires more renewables than previously thought

Harvesting clean hydrogen fuel through artificial photosynthesis

Renewable energy use accelerating, but progress is lacking

ENERGY TECH
Demonstration proves nuclear fission system can provide space exploration power

Framatome and Vattenfall sign contracts for the delivery of fuel assembly reloads

Balancing nuclear and renewable energy

Framatome receives two patent awards for nuclear innovations

ENERGY TECH
Solar powered sea slugs shed light on search for perpetual green energy

Novel approach for photosynthetic production of carbon neutral biofuel from green algae

Energy recovery of urban waste

Novel reaction could spark alternate approach to ammonia production

ENERGY TECH
Iranian jitters send oil prices lower

Shell announces total sale of shares in Canadian producer

Key sales agreement reached for Alaskan LNG project

Iranian question mark hangs over U.S. gas prices

ENERGY TECH
Dramatic action needed on climate change: UN

Scientists project a drier Amazon and wetter Indonesia in the future

Saskatchewan province goes to court to fight Canada carbon tax

In southern Iraq, drought tightens its grip









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.