Energy News  
TECH SPACE
A more sustainable way to refine metals
by Staff Writers
Montreal, Canada (SPX) Jun 20, 2017


Strategy for reducing the environmental impact of a refining process: replace hazardous chemicals with more benign and recyclable compounds. Credit Michael J. Krause (Western University)

A team of chemists in Canada has developed a way to process metals without using toxic solvents and reagents.

The system, which also consumes far less energy than conventional techniques, could greatly shrink the environmental impact of producing metals from raw materials or from post-consumer electronics.

"At a time when natural deposits of metals are on the decline, there is a great deal of interest in improving the efficiency of metal refinement and recycling, but few disruptive technologies are being put forth," says Jean-Philip Lumb, an associate professor in McGill University's Department of Chemistry. "That's what makes our advance so important."

The discovery stems from a collaboration between Lumb and Tomislav Friscic at McGill in Montreal, and Kim Baines of Western University in London, Ont. In an article published recently in Science Advances, the researchers outline an approach that uses organic molecules, instead of chlorine and hydrochloric acid, to help purify germanium, a metal used widely in electronic devices. Laboratory experiments by the researchers have shown that the same technique can be used with other metals, including zinc, copper, manganese and cobalt.

The research could mark an important milestone for the "green chemistry" movement, which seeks to replace toxic reagents used in conventional industrial manufacturing with more environmentally friendly alternatives. Most advances in this area have involved organic chemistry - the synthesis of carbon-based compounds used in pharmaceuticals and plastics, for example.

"Applications of green chemistry lag far behind in the area of metals," Lumb says. "Yet metals are just as important for sustainability as any organic compound. For example, electronic devices require numerous metals to function."

Taking a page from biology
There is no single ore rich in germanium, so it is generally obtained from mining operations as a minor component in a mixture with many other materials. Through a series of processes, that blend of matter can be reduced to germanium and zinc.

"Currently, in order to isolate germanium from zinc, it's a pretty nasty process," Baines explains. The new approach developed by the McGill and Western chemists "enables you to get germanium from zinc, without those nasty processes."

To accomplish this, the researchers took a page from biology. Lumb's lab for years has conducted research into the chemistry of melanin, the molecule in human tissue that gives skin and hair their color. Melanin also has the ability to bind to metals. "We asked the question: 'Here's this biomaterial with exquisite function, would it be possible to use it as a blueprint for new, more efficient technologies?'"

The scientists teamed up to synthesize a molecule that mimics some of the qualities of melanin. In particular, this "organic co-factor" acts as a mediator that helps to extract germanium at room temperature, without using solvents.

Next step: industrial scale
The system also taps into Friscic's expertise in mechanochemistry, an emerging branch of chemistry that relies on mechanical force - rather than solvents and heat - to promote chemical reactions. Milling jars containing stainless-steel balls are shaken at high speeds to help purify the metal.

"This shows how collaborations naturally can lead to sustainability-oriented innovation," Friscic says. "Combining elegant new chemistry with solvent-free mechanochemical techniques led us to a process that is cleaner by virtue of circumventing chlorine-based processing, but also eliminates the generation of toxic solvent waste"

The next step in developing the technology will be to show that it can be deployed economically on industrial scales, for a range of metals.

"There's a tremendous amount of work that needs to be done to get from where we are now to where we need to go," Lumb says. "But the platform works on many different kinds of metals and metal oxides, and we think that it could become a technology adopted by industry. We are looking for stakeholders with whom we can partner to move this technology forward."

"A chlorine-free protocol for processing germanium," Martin Glavinovic et al., Science Advances, 5 May 2017. DOI: 10.1126/sciadv.1700149

TECH SPACE
New waterproofing and antifouling materials developed by Swansea Scientists
Swansea UK (SPX) Jun 16, 2017
'Green' project led by Swansea scientists could replace more expensive and hazardous materials used for waterproofing and antifouling/fogging. New materials have been developed by scientists in the Energy Safety Research Institute (ESRI) at Swansea University which is nontoxic, economical and shows promise to replace more expensive and hazardous materials used for waterproofing and antifou ... read more

Related Links
McGill University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Low-carbon trajectory is the only option, European leaders say

Divestment streak continues for British energy company Centrica

New ultrathin material for splitting water could make hydrogen production cheaper

Keeping the hydrogen coming

TECH SPACE
Clean energy stored in electric vehicles to power buildings

Liquified gas electrolytes power new lower-temperature battery

Zig-zagging device focuses high-energy radiation emissions

A seaweed derivative could be just what lithium-sulfur batteries need

TECH SPACE
It's a breeze: How to harness the power of the wind

ADB: Asia-Pacific growth tied to renewables

GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

U.S. states taking up wind energy mantle

TECH SPACE
Photopower for microlabs

Urban Solar lands UL approval for entire product line

Solar paint offers endless energy from water vapor

New technology will enable properties to share solar energy

TECH SPACE
Japan court clears way for nuclear reactor restarts

AREVA-EWN consortium to dismantle the Reactor Pressure Vessel at Brunsbuttel

UNIST improves remote detection of hazardous radioactive substances

German court nukes tax on power firms

TECH SPACE
Scientists make plastic from sugar and carbon dioxide

Turning car plastics into foams with coconut oil

Scientists use new technique to recycle plant material into stock chemicals

Splitting carbon dioxide using low-cost catalyst materials

TECH SPACE
Oil prices in the black, but underlying pessimism setting in

Guyana, a new oil frontier, gets investment support

Oil-rich Kazakhstan gets backing for more regional cooperation

Joint US-Qatar navy exercise wraps up

TECH SPACE
Trump was 'wrong' to leave climate change deal: UK minister

US isolated as allies vow accelerated action on climate change

Climate change rift raises temperature for G7 meet

China rolls out green carpet for California on climate









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.