Subscribe to our free daily newsletters
  Energy News  

Subscribe to our free daily newsletters

Plastic and metal-organic frameworks partner for sensing and storage
by Staff Writers
Washington DC (SPX) Oct 26, 2017

File illustration only - watch a video presentation here

A marriage between 3-D printer plastic and a versatile material for detecting and storing gases could lead to inexpensive sensors and fuel cell batteries alike, suggests new research from the National Institute of Standards and Technology (NIST).

The material is called a metal-organic framework, or MOF - perhaps not as familiar a substance as plastic, but one that may prove as broadly useful. They are easy to make, cost little, and some of them are good at picking out a particular gas from the air.

Seen on a microscopic level, MOFs look like buildings under construction - think of steel girders with space between them. A particular MOF talent is to allow fluids to flow through their spaces while their girders attract some specific part of the fluid and hold onto it as the rest of the fluid flows past. MOFs are already promising candidates for refining petroleum and other hydrocarbons.

MOFs have caught the attention of a team of scientists from NIST and American University because they also might be good as the basis for inexpensive sensing technology. For example, certain MOFs are good at filtering out methane or carbon dioxide, both of which are greenhouse gases. The big problem is that newly made MOFs are tiny particles that in bulk have the consistency of dust. And it's hard to build a usable sensor from a material that slips through your fingers.

To address this problem, the team decided to try mixing MOFs into the plastic that is used in 3-D printers. Not only would the printer mold the plastic into any shape the team desired, but the plastic itself is permeable enough to allow gases to pass right through it, where the MOFs could snag the specific gas molecules the team wants to detect. The question was, would the MOFs work in the mix?

The team's new research paper shows the idea has promise not only for sensing but for other applications as well. It demonstrates that the MOFs and the plastic get along well; for example, the MOFs don't settle to the bottom of the plastic when it's melted, but stay evenly distributed in the mixture. The team then moved on to mix in a specific MOF that's good at capturing hydrogen gas and conducted testing to see how well the solidified mixture could store hydrogen.

"The auto industry is still looking for an inexpensive, lightweight way to store fuel in hydrogen-powered cars," said NIST sensor scientist Zeeshan Ahmed. "We're hoping that MOFs in plastic might form the basis of the fuel tank."

The paper also shows that when exposed to hydrogen gas, the solid mix retains more than 50 times more hydrogen than plastic alone, indicating the MOFs are still functioning effectively while inside the plastic. These are promising results, but not yet good enough for a fuel cell.

Ahmed said his team members are optimistic the idea can be improved enough to be practical. They have already built on their initial research in a second, forthcoming paper, which explores how well two other MOFs can absorb nitrogen gas as well as hydrogen, and also shows how to make the MOF-plastic mixtures immune to the degrading effects of humidity. The team is now pursuing collaborations with other NIST research groups to develop MOF-based sensors.

"The goal is to find a storage method that can hold 4.5 percent hydrogen by weight, and we've got a bit less than one percent now," he said. "But from a materials perspective, we don't need to make that dramatic an improvement to reach the goal. So we see the glass - or the plastic - as half full already."

Research paper

Scientists solve a magnesium mystery in rechargeable battery performance
Berkeley CA (SPX) Oct 20, 2017
Rechargeable batteries based on magnesium, rather than lithium, have the potential to extend electric vehicle range by packing more energy into smaller batteries. But unforeseen chemical roadblocks have slowed scientific progress. And the places where solid meets liquid - where the oppositely charged battery electrodes interact with the surrounding chemical mixture known as the electrolyte ... read more

Related Links
National Institute of Standards and Technology
Powering The World in the 21st Century at

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Japan faces challenges in cutting CO2, Moody's finds

IEA: An electrified world would cost $31B per year to achieve

'Fuel-secure' steps in Washington counterintuitive, green group says

SLAC-led project will use AI to prevent or minimize electric grid failures

Electronic entropy enhances water splitting

Scientists solve a magnesium mystery in rechargeable battery performance

Ames UConn team discover superconductor with bounce

PPPL takes detailed look at 2-D structure of turbulence in tokamaks

Construction to begin on $160 million Industry Leading Hybrid Renewable Energy Project

A kite that might fly

Scotland outreach to Canada yields wind energy investment

First floating wind farm starts operation in Scotland

New fractal-like concentrating solar power receivers are better at absorbing sunlight

German utility sees potential in rooftop solar

Recurrent Energy Announces Commercial Operation of 71 MW North Carolina Solar Project

How solar peaker plants could replace gas peakers

MATRIX pitched as a game changer for used fuel dry storage

South Korea to push ahead with nuclear power plants

AREVA NP awarded contract for safety upgrades in seven reactors

AREVA NP installs a system allowing flexible electricity generation at Goesgen nuclear power plant

Expanding Brazilian sugarcane could dent global CO2 emissions

Stiff fibers spun from slime

Converting carbon dioxide to carbon monoxide using water, electricity

Separating methane and CO2 will become more efficient

Amid energy spats, Ukraine's economy showing resilience

Electricity from shale gas versus coal

Kurdish government proposes end to independence push

Chinese offshore production lower than last year

US ocean observation critical to understanding climate change

Nicaragua signs Paris climate agreement

Geologic evidence is the forerunner of ominous prospects for a warming earth

'Plan B': Seven ways to engineer the climate

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement