![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Plainsboro NJ (SPX) Oct 16, 2017
A key hurdle for fusion researchers is understanding turbulence, the ripples and eddies that can cause the superhot plasma that fuels fusion reactions to leak heat and particles and keep fusion from taking place. Comprehending and reducing turbulence will facilitate the development of fusion as a safe, clean and abundant source of energy for generating electricity from power plants around the world. At the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), scientists have assembled a large database of detailed measurements of the two dimensional (2-D) structure of edge plasma turbulence made visible by a diagnostic technique known as gas puff imaging. The two dimensions, measured inside a fusion device called a tokamak, represent the radial and vertical structure of the turbulence.
Step toward fuller understanding Fusion occurs naturally in space, merging the light elements in plasma to release the energy that powers the sun and stars. On Earth, researchers create fusion in facilities like tokamaks, which control the hot plasma with magnetic fields. But turbulence frequently causes heat to leak from its magnetic confinement. PPPL scientists have now delved beyond previously published characterizations of turbulence and analyzed the data to focus on the 2-D spatial correlations within the turbulence. This correlation provides clues to the origin of the turbulent behavior that causes heat and particle leakage, and will serve as an additional basis for testing computer simulations of turbulence against empirical evidence.
Studying 20 discharges of plasma The puffs, a source of neutral atoms that glow in response to density changes within a well-defined region, allowed researchers to see fluctuations in the density of the turbulence. A fast camera recorded the resulting light at the rate of 400,000 frames per second over an image frame size of 64 pixels wide by 80 pixels high. Zweben and co-authors performed computational analysis of the data from the camera, determining the correlations between different regions of the frames as the turbulent eddies moved through them. "We're observing the patterns of the spatial structure," Zweben said. "You can compare it to the structure of clouds drifting by. Some large clouds can be massed together or there can be a break with just plain sky."
Detailed view of turbulence In the resulting graphics, a blue cross indicates the point of focus for a calculation; the red and yellow areas around the cross are regions in which the turbulence is evolving similarly to the turbulence at the focal point. Farther away, researchers found regions in which the turbulence is changing opposite to the changes at the focal point. These farther-away regions are shown as shades of blue in the graphics, with the yellow cross indicating the point with the most negative correlation. For example, if the red and yellow images were a region of high density turbulence, the blue images indicated low density. "The density increase must come from somewhere," said Zweben. "Maybe from the blue regions." Going forward, knowledge of these correlations could be used to predict the behavior of turbulence in magnetically confined plasma. Success of the effort could deepen understanding of a fundamental cause of the loss of heat from fusion reactions.
![]() Plainsboro NJ (SPX) Sep 27, 2017 A major issue facing ITER, the international tokamak under construction in France that will be the first magnetic fusion device to produce net energy, is whether the crucial divertor plates that will exhaust waste heat from the device can withstand the high heat flux, or load, that will strike them. Alarming projections extrapolated from existing tokamaks suggest that the heat flux could b ... read more Related Links Princeton Plasma Physics Laboratory Powering The World in the 21st Century at Energy-Daily.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |