Subscribe free to our newsletters via your
  Energy News  




Subscribe free to our newsletters via your




















ENERGY TECH
A seaweed derivative could be just what lithium-sulfur batteries need
by Staff Writers
Berkeley CA (SPX) Jun 16, 2017


Berkeley Lab battery scientist Gao Liu.

Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications. However, they suffer from significant capacity fading. Now scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have made a surprising discovery that could fix this problem.

In research led by Gao Liu, the team unexpectedly found that carrageenan, a seaweed derivative, acts as a stabilizer in lithium-sulfur batteries. Better stability allows for more cycling and an extended lifetime. Their study was published in the journal Nano Energy in a paper titled, "Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery."

"There's a lot of demand for energy storage, but there's very little chemistry that can meet the cost target," said Liu, the corresponding author of the paper. "Sulfur is a very low-cost material - it's practically free. And the energy capacity is much higher than that of lithium-ion. So lithium-sulfur is one chemistry that can potentially meet the target."

Rechargeable lithium-sulfur batteries have some limited commercial applications currently, but the "critical killer" in the chemistry is that the sulfur starts to dissolve, creating what is called the polysulfide shuttling effect. In trying to address this problem, Liu was experimenting with the binder, which is the substance that holds all the active materials in a battery cell together.

"A binder is like glue, and normally battery designers want a glue that is inert," Liu said. "This binder we tried worked really well. We asked why, and we discovered it's reacting - it reacted immediately with the polysulfide. It formed a covalent bonding structure."

By chemically reacting with the sulfur, the binder was able to stop it from dissolving. Once the researchers figured that out, they looked around for a naturally occurring material that would do the same thing. They landed upon carrageenan, a substance extracted from red seaweeds and in the same functional group (or group of atoms, with similar chemical reactivity) as the synthetic polymer they used in their initial experiments.

"We looked for something that was economical and readily available," Liu said. "It turns out carrageenan is used as a food thickener. And it actually worked just as well as the synthetic polymer - it worked as a glue and it immobilized the polysulfide, making a really stable electrode."

Visualizing in situ reactions
Liu worked with Jinghua Guo of Berkeley Lab's Advanced Light Source, one of the world's brightest sources of ultraviolet and soft X-ray beams, to make his discovery.

"The light source provides unique X-ray based tools," Guo said. "We want the tool to monitor the electrochemistry simultaneously while the battery is charging. In this case, we made a dedicated battery cell with the materials, then used X-rays to monitor the process under in situ conditions."

Liu added: "You can't do this kind of experiment anywhere else. In this case we have a unique beamline to detect sulfur. It's always a lot of effort to design the tool for in situ. Ex situ is easy, but in this case, ex situ didn't give you the result. With the in situ cell, we were able to watch where the sulfur goes. Turns out, it doesn't go anywhere. That was really cool."

General Motors, an industry research partner of Berkeley Lab's Energy Storage and Distributed Resources Division, confirmed Liu's research findings. "They independently tested it and saw the same effect we saw - in fact the stability was even better," Liu said.

Radical departure
The results open up an entirely new way of thinking about battery chemistry, Liu noted. "Scientifically, it's a totally different concept, of a binder that is reactive rather than inert," he said. "People don't think that way. They think a binder's function is to physically hold things together. We found, no, we need a way to chemically bind the polysulfide."

Liu and his group have been working on lithium-sulfur batteries for several years. They published a paper in Nano Letters last year on a novel lithium-sulfur electrode structure based on nature's own superefficient ant nest.

With this breakthrough to stabilize lithium-sulfur batteries Liu is now seeking to improve the lifetime of lithium-sulfur batteries even further. "We want to get to thousands of cycles," he said.

Lithium-sulfur batteries have more than twice the energy density of lithium-ion batteries, which now dominate the market. They are also much more lightweight so they have potential application in airplanes and drones. In fact, lithium-sulfur batteries provided nighttime power in the record-setting 14-day solar-powered flight of the Zephyr, an unmanned aircraft, in 2010.

Liu, Guo, and their team will continue to work on understanding the chemical reactions in the cell. "After this polymer binds with sulfur, what happens next? How does it react with sulfur, and is it reversible?" Liu said. "Understanding that will allow us to be able to develop better ways to further improve the life of lithium-sulfur batteries."

Research paper

ENERGY TECH
Batteries from scrap metal
Washington DC (SPX) Jun 12, 2017
Chinese scientists have made good use of waste while finding an innovative solution to a technical problem by transforming rusty stainless steel mesh into electrodes with outstanding electrochemical properties that make them ideal for potassium-ion batteries. As reported in the journal Angewandte Chemie, the rust is converted directly into a compact layer with a grid structure that can sto ... read more

Related Links
Lawrence Berkeley National Laboratory
Powering The World in the 21st Century at Energy-Daily.com

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Low-carbon trajectory is the only option, European leaders say

Divestment streak continues for British energy company Centrica

New ultrathin material for splitting water could make hydrogen production cheaper

Keeping the hydrogen coming

ENERGY TECH
New efficient, low-temperature catalyst for hydrogen production

Deceleration of runaway electrons paves the way for fusion power

Battery improvements spark HEV EV market breakthrough

Clean energy stored in electric vehicles to power buildings

ENERGY TECH
Thrive Renewables delivers mezzanine funded wind farms in Scotland

It's a breeze: How to harness the power of the wind

ADB: Asia-Pacific growth tied to renewables

GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

ENERGY TECH
Photopower for microlabs

Freshwater from salt water using only solar energy

Using sunlight to the max

NRL Issued Patent for Solar Microbial Fuel Cell

ENERGY TECH
Toshiba delays results again citing US nuclear unit

Russia sells stake in Akkuyu nuclear plant project in Turkey

S. Korea to scrap all plans to build new nuclear reactors

Japan court clears way for nuclear reactor restarts

ENERGY TECH
Corn better used as food than biofuel

Discovery could lead to sustainable ethanol made from carbon dioxide

Researchers produce biofuel for conventional diesel engines

Scientists make plastic from sugar and carbon dioxide

ENERGY TECH
Dallas Fed upbeat, but sees risk from lower oil prices

Anger in Nigeria's south over oil spill clean-up delay

Alaska critical to U.S. energy strategy, federal government says

Oil prices showing clear signs of daily gains

ENERGY TECH
NASA-MIT Study Evaluates Efficiency of Oceans as Heat Sink, Atmospheric Gases Sponge

OECD: Air pollution, urbanization offsetting gains in renewables

Climate change more important than partisan politics: Schwarzenegger

Starvation looms as food runs out in drought-hit Ethiopia




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement