Subscribe free to our newsletters via your
. Energy News .




NANO TECH
York researchers discover important mechanism behind nanoparticle reactivity
by Staff Writers
York, UK (SPX) Nov 07, 2013


An image of a cuboid iron nanoparticle following six months exposure to the environment. The blue area is the oxide layer forming around the core of the nanoparticle. Credit: Amish Shah and Dr Roland Kroger.

An international team of researchers has used pioneering electron microscopy techniques to discover an important mechanism behind the reaction of metallic nanoparticles with the environment.

Crucially, the research led by the University of York and reported in Nature Materials, shows that oxidation of metals - the process that describes, for example, how iron reacts with oxygen, in the presence of water, to form rust - proceeds much more rapidly in nanoparticles than at the macroscopic scale. This is due to the large amount of strain introduced in the nanoparticles due to their size which is over a thousand times smaller than the width of a human hair.

Improving the understanding of metallic nanoparticles - particularly those of iron and silver - is of key importance to scientists because of their many potential applications. For example, iron and iron oxide nanoparticles are considered important in fields ranging from clean fuel technologies, high density data storage and catalysis, to water treatment, soil remediation, targeted drug delivery and cancer therapy.

The research team, which also included scientists from the University of Leicester, the National Institute for Materials Science, Japan and the University of Illinois at Urbana-Champaign, USA, used the unprecedented resolution attainable with aberration-corrected scanning transmission electron microscopy to study the oxidisation of cuboid iron nanoparticles and performed strain analysis at the atomic level.

Lead investigator Dr Roland Kroger, from the University of York's Department of Physics, said: "Using an approach developed at York and Leicester for producing and analysing very well-defined nanoparticles, we were able to study the reaction of metallic nanoparticles with the environment at the atomic level and to obtain information on strain associated with the oxide shell on an iron core.

"We found that the oxide film grows much faster on a nanoparticle than on a bulk single crystal of iron - in fact many orders of magnitude quicker. Analysis showed there was an astonishing amount of strain and bending in nanoparticles which would lead to defects in bulk material."

The scientists used a method known as Z-contrast imaging to examine the oxide layer that forms around a nanoparticle after exposure to the atmosphere, and found that within two years the particles were completely oxidised.

Corresponding author Dr Andrew Pratt, from York's Department of Physics and Japan's National Institute for Materials Science, said: "Oxidation can drastically alter a nanomaterial's properties - for better or worse - and so understanding this process at the nanoscale is of critical importance. This work will therefore help those seeking to use metallic nanoparticles in environmental and technological applications as it provides a deeper insight into the changes that may occur over their desired functional lifetime."

The experimental work was carried out at the York JEOL Nanocentre and the Department of Physics at the University of York, the Department of Physics and Astronomy at the University of Leicester and the Frederick-Seitz Institute for Materials Research at the University of Illinois at Urbana-Champaign.

The scientists obtained images over a period of two years. After this time, the iron nanoparticles, which were originally cube-shaped, had become almost spherical and were completely oxidised.

Professor Chris Binns, from the University of Leicester, said: "For many years at Leicester we have been developing synthesis techniques to produce very well-defined nanoparticles and it is great to combine this technology with the excellent facilities and expertise at York to do such penetrating science. This work is just the beginning and we intend to capitalise on our complementary abilities to initiate a wider collaborative programme."

The research was supported by a Max-Kade Foundation Visiting Professorship stipend to Dr Kroger and financial support from the World Universities Network (WUN). The Engineering and Physical Sciences Research Council (EPSRC) funded the initial stages of the project (EP/D034604/1).

.


Related Links
University of York
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Nanomaterials database improved to help consumers, scientists track products
Blacksburg VA (SPX) Nov 09, 2013
Nanomaterials are the heart of the smaller, better electronics developed during the last decade, as well as new materials, medical diagnostics and therapeutics, energy storage, and clean water. However, exposure to nanomaterials may have unintended consequences for human health and the environment. As a resource for consumers, scientists, and policy makers, the Virginia Tech Center for Sus ... read more


NANO TECH
Emissions pricing and overcompensating

EU bids to revive carbon market on eve of Warsaw climate meet

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California

Lithuania seeking 'swift' approval of EU grid connection funds

NANO TECH
New technology can harvest 'lost' energy, create electricity

Shell 'manipulates Nigeria oil spills probes': Amnesty

Colorado vote against fracking to trigger more opposition?

Lebanon's gas boom-in-waiting goes into deep freeze

NANO TECH
Wind turbines blamed in death of estimated 600,000 bats in 2012

Assessing impact of noise from offshore wind farm construction may help protect marine mammals

Windswept German island gives power to the people

When the wind blows

NANO TECH
The Next Big Thing in the Energy Sector: Photovoltaic Generated DC Electricity

Big beats bolster solar cell efficiency

Understanding what makes a thin film solar cell efficient

Martifer Solar and Hanwha Q CELLS Korea complete PV project in Portugal

NANO TECH
Fukushima plant readies for delicate fuel rod removal

Japan's Toshiba to buy British nuclear firm: report

Volume of nuclear waste could be reduced by 90 percent

Fukushima operator TEPCO considers split: report

NANO TECH
Burning biomass pellets instead of wood or plants in China could lower mercury emissions

Scientists trick algae's biological clock to create valuable compounds

Crafting a better enzyme cocktail to turn plants into fuel faster

Chickens to benefit from biofuel bonanza

NANO TECH
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

NANO TECH
UN climate talks amid new warnings of dire warming

Greenhouse gas in atmosphere hits new record: UN

Two-degree global warming limit 'ever-more elusive': UN

Is global heating hiding out in the oceans




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement