Energy News  
CHIP TECH
World's fastest quantum simulator operating at the atomic level
by Staff Writers
Okazaki, Japan (SPX) Nov 18, 2016


Schematic explanation of the world's fastest quantum simulator. Image courtesy NINS and IMS. For a larger version of this image please go here.

Kenji Ohmori (Institute for Molecular Science, National Institutes of Natural Sciences, Japan) has collaborated with Matthias Weidemuller (University of Heidelberg), Guido Pupillo (University of Strasbourg), Claudiu Genes (University of Innsbruck) and their coworkers to develop the world's fastest simulator that can simulate quantum mechanical dynamics of a large number of particles interacting with each other within one billionths of a second.

The dynamics of many electrons interacting with each other governs a variety of important physical and chemical phenomena such as superconductivity, magnetism, and chemical reactions. An ensemble of many particles thus interacting with each other is referred to as a "strongly correlated system".

Understanding the properties of strongly correlated systems is thus one of the central goals of modern sciences. It is extremely difficult, however, to predict theoretically the properties of a strongly correlated system even if one uses the post-K supercomputer, which is one of the world's fastest supercomputers planned to be completed by the year 2020 in a national project of Japan.

For example, the post-K cannot exactly calculate even the energy, which is the most basic property of matter, when the number of particles in the system is more than 30.

Instead of calculating with a classical computer such as the post-K, an alternative concept has been proposed and referred to as a "quantum simulator", in which quantum mechanical particles such as atoms are assembled into an artificial strongly correlated system whose properties are known and controllable.

The latter is then used to simulate and understand the properties of a different strongly correlated system, whose properties are not known. Huge investment to the development of quantum simulators has therefore been started recently in national projects of various countries including US, EU, and China.

The team has developed a completely new quantum simulator that can simulate the dynamics of a strongly correlated system of more than 40 atoms within one billionths of a second. This has been realized by introducing a novel approach in which an ultrashort laser pulse whose pulse-width is only 100 billionths of a second is employed to control a high-density ensemble of atoms cooled down to temperatures close to absolute zero.

Furthermore they have succeeded in simulating the motion of electrons of this strongly correlated system that is modulated by changing the strength of interactions among many atoms in the ensemble.

This "ultrafast quantum simulator" is expected to serve as a basic tool to investigate the origin of physical properties of matter including magnetism and, possibly, superconductivity.

This result will be published in Nature Communications, an online scientific journal of UK, on 16th November 2016.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institutes of Natural Sciences
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Tracking the flow of quantum information
New Haven CT (SPX) Nov 18, 2016
If objects in motion are like rainwater flowing through a gutter and landing in a puddle, then quantum objects in motion are like rainwater that might end up in a bunch of puddles, all at once. Figuring out where quantum objects actually go has frustrated scientists for years. Now a Yale-led group of researchers has derived a formula for understanding where quantum objects land when they a ... read more


CHIP TECH
Study: LED lights draw fewer insects

Climate: Four nations map course to carbon-free economies

Shifting focus leaves mixed bag for German utility RWE

Deeper carbon cuts needed to avoid climate tragedy: UN

CHIP TECH
Researchers report new thermoelectric material with high power factors

EAST achieves longest steady-state H-mode pperations

Glow-in-the-dark dye could fuel liquid-based batteries

First observations of tongue deformation of plasma

CHIP TECH
Owl-inspired wing design reduces wind turbine noise by 10 decibels

DONG Energy sets wind energy sights on Taiwan

Interior set to rule on future of BLM's Renewable Energy Program

Microsoft Corp. taps deeper into wind power

CHIP TECH
Africa looks to solar for communities off the grid

Tesla shareholders approve merger with SolarCity

New Jersey's NEP Solar secures major funding agreement

Wind and solar energy projects could bring 5,000 new jobs to rural Minnesota

CHIP TECH
Breakthrough offers greater understanding of safe radioactive waste disposal

French power company EDF underestimating costs: study

Finnish client 'alarmed' by French nuclear industry overhaul

Time to tackle the UK's plutonium mountain

CHIP TECH
UNIST researchers turn waste gas into road-ready diesel fuel

NextCoal to produce bio-coal for export to Japan, bio-oil for domestic use

New biofuel cell with energy storage

Bioelectronics at the speed of life

CHIP TECH
Chinese astronauts return to earth after longest mission

Material and plant samples retrieved from space experiments

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

CHIP TECH
Donald Trump looms large over future of climate action

UN climate meeting closes under Trump shadow

Earth sees hottest year-to-date in modern era: US

UN meeting urges 'highest political commitment' on climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.