Energy News  
STELLAR CHEMISTRY
Winds blowing off a dying star
by Staff Writers
Kyoto, Japan (SPX) Nov 13, 2017


illustration only

Stars like our Sun eject large amounts of gas and dust into space, containing various elements and compounds. Asymptotic giant branch - AGB - phase stars, near their end of life, are particularly significant sources of such substances in our galaxy.

Formation of dust around AGB stars has been considered to play an important role in triggering acceleration of stellar wind, but the detailed mechanism of this acceleration has not been well explained.

And there is yet another conundrum. In space, silicon is ten times more abundant than aluminum. However, many oxygen-rich AGB stars are rich in aluminum oxide dust - the major carrier of aluminum - but poor in silicate dust - the carrier of silicon, which has puzzled researchers: why is aluminum oxide dust so abundant around oxygen-rich AGB stars?

In a paper published in Science Advances, a research team led by Aki Takigawa of Kyoto University have utilized the Atacama Large Millimeter/submillimeter Array - ALMA, as the high spatial-resolution radio interferometer in Chile is known - to obtain detailed images of gas molecules forming dust surrounding an AGB star.

"Previously, there was a limit to how well we could observe dust forming regions close to stars," explains Takigawa. "Now, thanks to the high spatial resolution of ALMA, we can obtain images of gases in these regions in finer detail. So we pointed ALMA toward an aluminum oxide-rich AGB star, W Hydrae."

Gas molecules aluminum monoxide and silicon monoxide - AlO and SiO - eventually form aluminum oxide and silicate dust. The team observed that AlO was distributed within three stellar radii of W Hydrae, which was surprisingly similar to the previously-observed dust distribution.

Meanwhile, SiO was detected beyond five stellar radii, and moreover 70% remained gaseous, without forming into dust.

"These results indicate that as aluminum oxide grows and accumulates near a star, the addition of a small amount of silicate dust may trigger wind acceleration," elaborates Takigawa. "This decreases gas density, suppressing further silicate dust formation."

"This may explain the presence of aluminum-oxide-rich but silicate-poor AGB stars."

These new results shed light not only on the dynamics of gas and dust surrounding stars, but also on the importance of studying both together. The team plans to continue using ALMA to elucidate gas and dust dynamics in the universe.

The paper "Dust formation and wind acceleration around the aluminum oxide-rich AGB star W Hydrae" appeared 1 November 2017 in Science Advances, with doi: 10.1126/sciadv.aao2149

STELLAR CHEMISTRY
The star that would not die
Goleta CA (SPX) Nov 09, 2017
Supernovae, the explosions of stars, have been observed in the thousands and in all cases they marked the death of a star. Astronomers at Las Cumbres Observatory have discovered a remarkable exception - a star that exploded multiple times over a period of more than fifty years. Their observations are challenging existing theories on these cosmic catastrophes. When the supernova, named iPTF ... read more

Related Links
Kyoto University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Improving sensor accuracy to prevent electrical grid overload

Japan faces challenges in cutting CO2, Moody's finds

IEA: An electrified world would cost $31B per year to achieve

'Fuel-secure' steps in Washington counterintuitive, green group says

STELLAR CHEMISTRY
'Perfectly frustrated' metal provides possible path to superconductivity

Scientists make progress in quest for fusion energy

Cool textiles to beat the heat

A novel layered superconductor based on tin and arsenic

STELLAR CHEMISTRY
New York sets high bar for wind energy

Construction to begin on $160 million Industry Leading Hybrid Renewable Energy Project

A kite that might fly

Scotland outreach to Canada yields wind energy investment

STELLAR CHEMISTRY
China Saves the World, and America Too by Going Off-The-Grid

In Morocco, a blue tourist town is turning green

Mechanochemistry paves the way to higher quality perovskite photovoltaics

OMCO Solar expands to met demand for field-fast racking systems

STELLAR CHEMISTRY
AREVA NP introduces FORERUNNER robot to optimize steam generator inspections

France backtracks on nuclear power reduction target

Nuclear energy programs may not increase likelihood of proliferation

Bulgaria extends life of Soviet-era nuclear reactor

STELLAR CHEMISTRY
Sandia speeds transformation of biofuel waste into wealth

Study identifies additional hurdle to widespread planting of bioenergy crops

Penn researchers mimic giant clams to enhance the production of biofuel

Research aims to help renewable jet fuel take flight

STELLAR CHEMISTRY
An effective solution for collecting spilled petroleum

Oil price response to OPEC report on demand muted

Statoil makes headway with Barents Sea field development

Iraq targets 1 million bpd output for disputed Kirkuk oilfields

STELLAR CHEMISTRY
Scientists warn of 'giant leap backward' at climate talks

Heat on 'climate chancellor' Merkel over coal and cars

Climate target too low and progress too slow: top scientist

US defends fossil fuels at UN climate meeting









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.