Subscribe free to our newsletters via your
. Energy News .




SPACEWAR
Where is that spacecraft
by Staff Writers
Philadelphia PA (SPX) Sep 29, 2014


It is important to study uncertainty in the space surveillance tracking environment in order to protect space assets and maintain awareness of potentially adversarial space deployments.

Space surveillance is inherently challenging when compared to other tracking environments due to various reasons, not least of which is the long time gap between surveillance updates. "Unlike the air and missile defense environments where objects are frequently observed, the space surveillance environment data is starved, with many objects going several orbital periods between observations," according to researcher Joshua Horwood.

"Thus, it is more challenging to predict the future location of these sparsely-seen objects and they have a tendency to get lost using traditional methods. A new way of tracking them, the Gauss von Mises (GVM) distribution, has improved predictive capabilities that permit one to more effectively maintain custody of infrequently-observed space objects."

In a paper published in July in the SIAM/ASA Journal on Uncertainty Quantification, authors Horwood and Aubrey Poore, both of Numerica Corporation, propose a more statistically rigorous treatment of uncertainty in the near-Earth space environment than currently available. The method proposed is a new class of multivariate probability density functions, called the Gauss von Mises (GVM) family of distributions.

"By more faithfully representing the uncertainty in a space object's orbit, the GVM distribution allows one to more accurately predict the future locations of satellites and debris," says Horwood.

"Uncertainty propagation using the GVM distribution can be achieved at a computational cost commensurate with traditional methods and can maintain a proper characterization of the uncertainty for up to eight times as long."

It is important to study uncertainty in the space surveillance tracking environment in order to protect space assets and maintain awareness of potentially adversarial space deployments.

The proper characterization of uncertainty enables us to allocate resources in order to gain as much information about the system as possible, and detect satellite maneuvers. Better uncertainty quantification also helps us track and look for close approaches between any two space objects, a process called conjunction analysis.

Horwood explains further with an example, "In the problem of conjunction analysis, the use of the GVM distribution can provide a more reliable probability of collision and allows conjunction assessments further into the future. This translates into fewer false alarms and hence fewer expensive maneuver operations that have to be performed on operational spacecraft."

In order to quantify uncertainty, proper characterization of a space object's full state probability density function (PDF) is required to faithfully represent the statistical errors. The GVM distribution approach is supported by a suite of next-generation algorithms for uncertainty propagation, data association, space catalog maintenance, and other space situational awareness functions.

What distinguishes the GVM distribution is that it is defined on a cylindrical manifold, and such coordinates, used in conjunction with the GVM distribution, can provide a statistically rigorous treatment of uncertainty needed for orbit determination and tracking.

Methods proposed in this paper will be beneficial for studying various aspects of future space surveillance. "A quantification of the uncertainties in space surveillance is a prerequisite for robustly tracking hundreds of thousands of space objects that are expected in the future," says Horwood.

"This involves various levels of research including sensor-level processing (to improve the characteristics of the measurement errors and biases), propagation of uncertainty, dynamics and space environment modeling, inverse problems such as statistical orbit determination, and high performance computing to serve the growing space catalog."

.


Related Links
Society for Industrial and Applied Mathematics
Military Space News at SpaceWar.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACEWAR
AFSPC Commander advocates defending space superiority
Washington DC (SPX) Sep 22, 2014
The Commander of Air Force Space Command Gen. John Hyten charged the Air Force to defend its position and remain on the cutting edge of international space operations during the 2014 Air Force Association's Air and Space Conference and Technology Exposition here Sept. 16. Of air, space and cyberspace, AFSPC remains directly responsible for the latter two of the Air Force's three warfightin ... read more


SPACEWAR
Paraffins to cut energy consumption in homes

South Australia to reap benefits from higher Renewable Energy Target

Renewables critical to achieving Energy Green Paper goals

Smart meters could cause conflict for housemates

SPACEWAR
Smart, eco-friendly new battery to solve problems

New Technology May Lead to Prolonged Power in Mobile Devices

How things coil

Blue LED breakthrough for efficient electronics

SPACEWAR
Scottish renewable energy output up 30 percent from 2013

UAE's Masdar joins mega wind project off Britain

RWE Innogy gets new British wind energy running

Moventas to service two turbines in Eesti Energia's Aulepa wind park

SPACEWAR
Taking thin films to the extreme

How to make a 'perfect' solar absorber

Blades of grass inspire advance in organic solar cells

Cree Introduces Industry's First 1.7kV All-SiC Power Module

SPACEWAR
Fukushima operator, Sellafield to compare nuclear notes

India turns to nuclear as energy crisis deepens

Los Alamos researchers uncover new properties in nanocomposite oxide ceramics for reactor fuel, fast-ion conductors

AREVA wins additional contract from the US DoE for the development of Enhanced Accident Tolerant Fuel

SPACEWAR
Bioenergy: Australia's forgotten renewable energy source (so far)

Maverick Synfuels Introduces Maverick Oasis

Plant variants point the way to improved biofuel production

Search for better biofuels microbes leads to the human gut

SPACEWAR
China's first space lab in operation for over 1000 days

China Exclusive: Mars: China's next goal?

Astronauts eye China's future space station

China eyes working with other nations as station plans develop

SPACEWAR
Greenland Ice Sheet more vulnerable than previously thought

NASA, Partners Target Megacities Carbon Emissions

CO2 emissions set to reach new 40 billion ton record high in 2014

Climate: Now to turn summit prose into action




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.