Subscribe free to our newsletters via your
. Energy News .




EARLY EARTH
What evolved first -- a dexterous hand or an agile foot?
by Staff Writers
Tokyo, Japan (SPX) Oct 08, 2013


Both monkey (Macaca fuscata, left) and human (Homo sapiens, right) have five physically independent fingers (top) and five toes (bottom), although the human foot is irregular in shape. Monkey hand, foot and human hand are similar in shape except for monkey heel (grey). In addition, human toe I is larger than the lesser toes, whereas monkey toes are similar in size. The fingers were represented independently (color coded) in the primate somatosensory cortex (SI): I, red; II, orange; III, yellow; IV, green and V, blue. By contrast, the representations of the toes were fused, with the exception of the great toe in humans. Credit: RIKEN

Resolving a long-standing mystery in human evolution, new research from the RIKEN Brain Science Institute indicates that early hominids developed finger dexterity and tool use ability before the development of bipedal locomotion.

Combining monkey and human behavior, brain imaging, and fossil evidence, a research team led by neurobiologist Dr. Atsushi Iriki and including Dr. Gen Suwa, an anthropologist from the University of Tokyo Museum, have overturned the common assumption that manual dexterity evolved after the development of bipedal locomotion freed hominid hands to use fingers for tool manipulation.

In a study published in Philosophical Transactions of the Royal Society, the researchers employed functional magnetic resonance imaging in humans and electrical recording from monkeys to locate the brain areas responsible for touch awareness in individual fingers and toes, called somatotopic maps.

With these maps, the researchers confirmed previous studies showing that single digits in the hand and foot have discrete neural locations in both humans and monkeys.

However, the researchers found new evidence that monkey toes are combined into a single map, while human toes are also fused into a single map, but with the prominent exception of the big toe, which has its own map not seen in monkeys.

These findings suggest that early hominids evolved dexterous fingers when they were still quadrupeds. Manual dexterity was not further expanded in monkeys, but humans gained fine finger control and a big toe to aid bipedal locomotion.

"In early quadruped hominids, finger control and tool use were feasible, while an independent adaptation involving the use of the big toe for functions like balance and walking occurred with bipedality," the authors explained.

The brain study was supported by analysis of the well-preserved hand and feet bones of a 4.4 million year-old skeleton of the quadruped hominid Ardipithecus ramidus, a species with hand dexterity that preceded the human-monkey lineage split.

The findings suggest that the parallel evolution of two-legged locomotion and manual dexterity in hands and fingers in the human lineage were a consequence of adaptive pressures on ancestral quadrupeds for balance control by foot digits while retaining the critical capability for fine finger specialization.

"Evolution is not usually thought of as being accessible to study in the laboratory", stated Dr. Iriki, "but our new method of using comparative brain physiology to decipher ancestral traces of adaptation may allow us to re-examine Darwin's theories".

T. Hashimoto et al. Hand Before Foot? cortical somatotopy suggests manual dexterity is primitive and evolved independently of bipedalism Philosophical Transactions of the Royal Society B, 2013 DOI:10.1098/rstb.2012.0417

.


Related Links
RIKEN
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Fossils push flowering plants back to early Triassic
Zurich, Switzerland (SPX) Oct 03, 2013
Flowering plants evolved from extinct plants related to conifers, ginkgos, cycads, and seed ferns. The oldest known fossils from flowering plants are pollen grains. These are small, robust and numerous and therefore fossilize more easily than leaves and flowers. An uninterrupted sequence of fossilized pollen from flowers begins in the Early Cretaceous, approximately 140 million years ago, ... read more


EARLY EARTH
Real-life hobbit village channels eco-values

IEA: Southeast Asia's energy demand to increase 80 percent

Nigeria signs $1.3 bn power plant deal with China

Myanmar's energy sector boosted by World Bank investment

EARLY EARTH
Putin demands Dutch apology on diplomat amid Greenpeace row

Spanish protesters demand closure of gas site linked to quakes

The Shale Boom, Just Getting Started

Singapore, China giants mull Spain gas investment: report

EARLY EARTH
Installation of the first AREVA turbines at Trianel Windpark Borkum and Global Tech 1

Trump's suit to halt wind farm project to be heard in November

Ireland connects first community-owned wind farm to grid

Moventas significantly expands wind footprint

EARLY EARTH
DEK Solar Helps Break New Barriers for Low-Cost, High-Efficiency Solar Cells

Solar power's future brawl

Another 1MW of Community-Owned Solar Comes Online in Colorado

Solid UK performance signals strong future for Trina Solar

EARLY EARTH
Japan nuclear regulator berates Fukushima operator

Japan nuclear regulator berates Fukushima operator

New leak at crippled Fukushima nuclear plant: TEPCO

Bangladesh breaks ground for first nuclear power plant

EARLY EARTH
UCLA engineers develop new metabolic pathway to more efficiently convert sugars into biofuels

KAIST announced a novel technology to produce gasoline by a metabolically engineered microorganism

Solving ethanol's corrosion problem may help speed the biofuel to market

First look at complete sorghum genome may usher in new uses for food and fuel

EARLY EARTH
NASA ban on Chinese scientists 'inaccurate': lawmaker

What's Next, Tiangong?

Onward and upward as China marks 10 years of manned spaceflight

Chinese VP stresses peaceful use of space

EARLY EARTH
Climate change: Fast out of the gate, slow to the finish the gate

Climate Models Show Potential 21st Century Temperature and Precipitation Changes

Reconstruction for the eastern Mediterranean temps based on tree rings

Greater desertification control using sand trap simulations




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement