Energy News  
STELLAR CHEMISTRY
Webb catches fiery Hourglass as new star forms
by Agency Writers
Baltimore MD (SPX) Nov 17, 2022

The protostar within the dark cloud L1527, shown in this image from NASA's James Webb Space Telescope Near-Infrared Camera (NIRCam), is embedded within a cloud of material feeding its growth. Detailed images and captions for this Webb Early Science photo release can be accessed here

NASA's James Webb Space Telescope has revealed the once-hidden features of the protostar within the dark cloud L1527, providing insight into the beginnings of a new star. These blazing clouds within the Taurus star-forming region are only visible in infrared light, making it an ideal target for Webb's Near-Infrared Camera (NIRCam).

The protostar itself is hidden from view within the "neck" of this hourglass shape. An edge-on protoplanetary disk is seen as a dark line across the middle of the neck. Light from the protostar leaks above and below this disk, illuminating cavities within the surrounding gas and dust.

The region's most prevalent features, the clouds colored blue and orange in this representative-color infrared image, outline cavities created as material shoots away from the protostar and collides with surrounding matter. The colors themselves are due to layers of dust between Webb and the clouds. The blue areas are where the dust is thinnest. The thicker the layer of dust, the less blue light is able to escape, creating pockets of orange.

Webb also reveals filaments of molecular hydrogen that have been shocked as the protostar ejects material away from it. Shocks and turbulence inhibit the formation of new stars, which would otherwise form all throughout the cloud. As a result, the protostar dominates the space, taking much of the material for itself.

Despite the chaos that L1527 causes, it's only about 100,000 years old - a relatively young body. Given its age and its brightness in far-infrared light as observed by missions like the Infrared Astronomical Satellite, L1527 is considered a class 0 protostar, the earliest stage of star formation. Protostars like these, which are still cocooned in a dark cloud of dust and gas, have a long way to go before they become full-fledged stars.

L1527 doesn't generate its own energy through nuclear fusion of hydrogen yet, an essential characteristic of stars. Its shape, while mostly spherical, is also unstable, taking the form of a small, hot, and puffy clump of gas somewhere between 20 and 40% the mass of our Sun.

As the protostar continues to gather mass, its core gradually compresses and gets closer to stable nuclear fusion. The scene shown in this image reveals L1527 doing just that. The surrounding molecular cloud is made up of dense dust and gas being drawn to the center, where the protostar resides.

As the material falls in, it spirals around the center. This creates a dense disk of material, known as an accretion disk, which feeds material to the protostar. As it gains more mass and compresses further, the temperature of its core will rise, eventually reaching the threshold for nuclear fusion to begin.

The disk, seen in the image as a dark band in front of the bright center, is about the size of our solar system. Given the density, it's not unusual for much of this material to clump together - the beginnings of planets. Ultimately, this view of L1527 provides a window into what our Sun and solar system looked like in their infancy.


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Astronomers capitalize on early access to James Webb Space Telescope data
Irvine CA (SPX) Nov 15, 2022
First in line to receive data transmissions from the James Webb Space Telescope, a team of astronomers at the University of California, Irvine and other institutions is using the unprecedentedly clear observations to reveal the secret inner workings of galaxies. In a paper published in The Astrophysical Journal Letters, the researchers describe their examination of the nearby galaxy NGC 7469 with the JWST's ultrasensitive mid-infrared detection instruments. They conducted the most detailed analysi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Space Technologies offer opportunity to achieve one-sixth of emissions cuts needed to reach net zero by 2050

Rich, developing nations head toward climate compensation clash

Most firms' net-zero plans not up to scratch: monitor

UN climate talks enter home stretch with deep divides

STELLAR CHEMISTRY
Canada arrests EV battery researcher for alleged spying for China

PPPL awarded more than $12 million to speed development of a fusion pilot plant

New superfast method to manufacture high-performance thermoelectric devices

Crystals generate electricity from heat

STELLAR CHEMISTRY
Nine countries join alliance to boost offshore windpower

UAE, Egypt ink major wind energy deal on COP27 sidelines

US to offer leases for Pacific offshore wind energy platforms

Wind turbine maker Siemens Gamesa plans 2,900 jobs cuts

STELLAR CHEMISTRY
NASA astronauts complete spacewalk to prep for upcoming solar array upgrades

Dirt-cheap solar evaporation could provide soil pollution solution

A novel concept for photovoltaics developed at TU Dresden

Sun-soaked North Africa pushes for cheap energy

STELLAR CHEMISTRY
Framatome to extend outage services to PSEG for long-term plant operations

Framatome's GAIA Enhanced Accident Tolerant Fuel completes 2nd cycle at Vogtle

SGT , completes steam generator replacement at Watts Bar

Isotope Production System begins commercial production of cancer-fighting isotopes

STELLAR CHEMISTRY
New project will design first Danish reactor for carbon negative hydrogen production from biogas

Biofuel on the road to energy, cost savings

NASA and industry advance jet engines and sustainable fuel compatibility

Project Fierce fuels the future of synthetic jet fuel generation

STELLAR CHEMISTRY
US targets fossil fuel 'super-emitters' of methane

Soil moisture plays biggest role in underground spread of natural gas leaking from pipelines

Fort McKay: where Canada's boreal forest gave way to oil sands

Turkey becomes new route for Russian oil to EU: think tank

STELLAR CHEMISTRY
Earth-sun distance dramatically alters seasons of equatorial Pacific over 22,000-year cycle

Brazil's Lula, world leaders bolster UN climate talks

UN climate talks enter home stretch split over money

US, China agree to resume climate cooperation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.