Energy News  
Water Ideas Are All Wet

Image of a water molecules composed of 2 hydrogen atoms and 1 oxygen atom. Water molecules are polar, resulting in a partial negative charge near the oxygen atom and partial positive charges near the hydrogen atoms. This uneven distribution of charge causes water molecules to attract one another - forming the 'hydogen bond' shown above. Hydrogen bonds are what give water unique properties that are ultimately essential for water's role in making life on Earth possible. Credit: University of Arizona
by Staff Writers
Moffett Field CA (SPX) Aug 14, 2008
According to new research, old ideas about water behavior are all wet. Ubiquitous on Earth, water also has been found in comets, on Mars and in molecular clouds in interstellar space. Now, scientists say this common fluid is not as well understood as we thought.

"Water, as we know it, does not exist within our bodies," said Martin Gruebele, a William H. and Janet Lycan Professor of Chemistry at the University of Illinois.

"Water in our bodies has different physical properties from ordinary bulk water, because of the presence of proteins and other biomolecules. Proteins change the properties of water to perform particular tasks in different parts of our cells."

The study provides a unique view of how water, a molecule essential for life as we know it, interacts with the biological processes inside living organisms. It's a fantastic showing of how life is intimately linked with the environment on a molecular level.

Consisting of two hydrogen atoms and one oxygen atom, water molecules are by far the body's largest component, constituting about 75 percent of body volume. When bound to proteins, water molecules participate in a carefully choreographed ballet that permits the proteins to fold into their functional, native states. This delicate dance is essential to life.

"While it is well known that water plays an important role in the folding process, we usually only look at the motion of the protein," said Gruebele, who also is the director of the U. of I.'s Center for Biophysics and Computational Biology, and a researcher at the Beckman Institute. "This is the first time we've been able to look at the motion of water molecules during the folding process."

Using a technique called terahertz absorption spectroscopy, Gruebele and his collaborator Martina Havenith at the Ruhr-University Bochum studied the motions of a protein on a picosecond time scale (a picosecond is 1 trillionth of a second).

The technique, which uses ultrashort laser pulses, also allowed the researchers to study the motions of nearby water molecules as the protein folded into its native state.

The researchers present their findings in a paper published July 23 in the online version of the chemistry journal Angewandte Chemie.

Terahertz spectroscopy provides a window on protein-water rearrangements during the folding process, such as breaking protein-water-hydrogen bonds and replacing them with protein-protein-hydrogen bonds, Gruebele said. The remaking of hydrogen bonds helps organize the structure of a protein.

In tests on ubiquitin, a common protein in cells, the researchers found that water molecules bound to the protein changed to a native-type arrangement much faster than the protein. The water motion helped establish the correct configuration, making it much easier for the protein to fold.

"Water can be viewed as a 'designer fluid' in living cells," Gruebele said. "Our experiments showed that the volume of active water was about the same size as that of the protein."

The diameter of a single water molecule is about 3 angstroms (an angstrom is about one hundred-millionth of a centimeter), while that of a typical protein is about 30 angstroms. Although the average protein has only 10 times the diameter of a water molecule, it has 1,000 times the volume.

Larger proteins can have hundreds of thousands times the volume. A single protein can therefore affect, and be influenced by, thousands of water molecules.

"We previously thought proteins would affect only those water molecules directly stuck to them," Gruebele said. "Now we know proteins will affect a volume of water comparable to their own. That's pretty amazing."

Community
Email This Article
Comment On This Article

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of Illinois
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Cracking The Question Of Extraterrestrial Life
Moscow ID (SPX) Aug 08, 2008
With average temperatures of minus 260 degrees Fahrenheit, an almost nonexistent atmosphere and a complex web of cracks in a layer of ice encompassing the entire surface, the environment on Jupiter's moon Europa is about as alien as they come.







  • ACCIONA Launches 180 MW Tatanka Wind Farm
  • Air Products' Mobile Hydrogen Fueler Technology Supports Hydrogen Tour '08
  • Johnson Controls To Improve Energy Usage At Oak Ridge National Labs
  • Walker's World: $200 oil is coming

  • Babcock And Wilcox To Acquire Nuclear Fuel Services
  • Progress Energy Florida Files Nuclear Plant Application With NRC
  • US official urges nuclear suppliers to back US-India pact
  • Yucca Mountain cost estimate is increased

  • Dutch town tests 'air-purifying' concrete
  • Scientists Search For Answers From The Carbon In The Clouds
  • Air Monitoring Helps Anticipate Possible Ecosystem Changes
  • Air Travelers And Astronomers Could Benefit From Atmospheric Turbulence Research

  • Climate Change Caused Widespread Tree Death In California Mountain Range
  • Forest Survives Revolutionary War Better Than Modern Times
  • The Drivers Of Tropical Deforestation Are Changing
  • Forest fire hot spots almost double on Borneo: Indonesian official

  • PTC's Pro/Engineer Used Indian Irrigation Project
  • Ethical coffee helps save Peruvian rainforest
  • No Evidence To Support Organic Is Best
  • TAU Researchers Root Out New And Efficient Crop Plants

  • Volkswagen Participates In National Hydrogen Road Tour
  • Ultra Motor Introduces New Electric Bike To US Market
  • Mitsubishi's i MiEV Electric Vehicles Tested
  • Compressed air cars eyed by industry

  • NASA evaluates new wing sensor
  • Russia And China May Co-Design New Passenger Plane
  • China Southern Airlines managers take paycut due to oil prices
  • Air China says it is to buy 45 Boeing aircraft

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement