Energy News  
TECH SPACE
Watching nanomaterials form in 4-D
by Staff Writers
Evanston IL (SPX) Apr 26, 2018

The new technology leverages a robotic system, designed by Gianneschi's group, which assembles chemicals needed for the experiment with high precision and reproducibility.

When famed physicists Max Knoll and Ernst Ruska first introduced the transmission electron microscope (TEM) in 1933, it allowed researchers to peer inside cells, microorganisms and particles that were once too small to study.

For decades, these high-powered instruments had been limited to taking static snapshots of specimens, which only tell part of the story. Now researchers from Northwestern University and the University of Florida are filling in the blanks to make this story more complete.

The team is part of an effort to develop a new type of TEM that takes dynamic, multi-frame videos of nanoparticles as they form, allowing researchers to view how specimens change in space and time. Knowing how these particles form could change how researchers design future drug-delivery systems, paints, coatings, lubricants and other materials for which having control over nanoscale properties can lead to large effects on macroscale materials.

"We have demonstrated that TEM does not have to be a microscopy method solely used to analyze what happened after the fact - after a reaction ends," said Nathan Gianneschi, professor of chemistry, biomedical engineering and materials science and engineering at Northwestern, who co-led the study.

"But, rather, that it can be used to visualize reactions while they are occurring."

"Before, we just had snapshots of what things looked like in particular instances of time," said Brent Sumerlin, the George Bergen Butler Professor of Chemistry at the University of Florida, who co-led the study with Gianneschi.

"Now, we are beginning to see the evolution of materials in real time, so we can see how transformations occur. It's mind blowing."

The research was published April 25, in the journal ACS Central Science. Mollie A. Touve, a graduate student in Gianneschi's laboratory, is the paper's first author.

Gianneschi and Sumerlin's novel technology has three major components: polymerization-induced self-assembly (PISA), a robotic system that assembles the experiments and a camera attached to the microscope that captures the particles as they form and change.

An expert in PISA, Sumerlin has long used the technique, which makes large quantities of well-defined soft materials, in his laboratory. He specifically uses PISA to form self-assembling micelles, a type of spherical nanomaterial with many applications - from soaps to targeted drug delivery.

Although micelles are well known for having interesting functions, there are knowledge gaps in how they actually form. Gianneschi and Sumerlin wondered if they could use an electron microscope to watch micelles - in action - as they self-assemble with PISA.

"Because these materials are on the nanometer length scale, we obviously needed an electron microscope to observe them," said Gianneschi, a member of Northwestern's International Institute of Nanotechnology.

"So, essentially, we wanted to use the electron microscope as a test tube."

With high precision and reproducibility, the team's robotic system assembled all of the chemicals needed to make the particles. Then, the microscope's electron beam triggered a reaction that caused the micelles to begin to form. Although Gianneschi's camera system did not capture the micelles' entire transformation, it did allow the researchers to see part of it.

"I'm pleasantly surprised that we pulled this part off," Gianneschi said.

"But optimizing the system - so we can see the reaction's entire trajectory - will keep us busy for the next few years."

Still, Gianneschi and Sumerlin are pleased that they have introduced an important element to electron microscopy: time. Gianneschi likens their achievement to the process of cooking.

"Imagine cooking dinner without being able to watch it," he said.

"You can follow the recipe, but you don't really how it's going. You can't watch the meat brown on the stove or the dough rise. You need to be able to observe it directly. We take that for granted in normal life."

"With traditional chemical analysis, sometimes the output is a two-dimensional line with a few peaks and valleys, and we use that to gain an idea of what's happening," Sumerlin added.

"But now we are actually making nanostructures and watching them form. This is a big change."

Research paper


Related Links
Northwestern University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Scientists identify unique binding mechanism of antifreeze molecule
Nagano, Japan (SPX) Apr 20, 2018
Scientists have identified a unique molecular binding mechanism that helps keep non-mammalian creatures in sub-zero temperatures from freezing. Antifreeze glycoproteins (AFGPs), produced by polar fishes, inhibit ice growth to prevent their bodies from freezing. This ice binding mechanism, which scientists knew was soft and flexible, remained a mystery until now. Using molecular simulations, scientists identified the details of this binding mechanism. Their results were published in early April in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Carbon taxes can be both fair and effective, study shows

Trump rolls back Obama-era fuel efficiency rules

Lights out for world landmarks in nod to nature

Puerto Rico power grid snaps, nearly 1 million in the dark

TECH SPACE
New materials for sustainable, low-cost batteries

Water-based battery can store solar and wind energy

A surprising new superconductor

Nanowires could make lithium ion batteries safer

TECH SPACE
US renewables firm takes Poland to court over U-turn on windmills

New control strategy helps reap maximum power from wind farms

Alberta proposes more renewable energy incentives

Transformer station for giant German wind farm positioned

TECH SPACE
Bright future for solar cell technology

Research gives new ray of hope for solar fuel

Harnessing synergies between solar energy, heat and mobility

ABB Ability supports India's clean-energy future

TECH SPACE
Framatome and Vattenfall sign contracts for the delivery of fuel assembly reloads

Balancing nuclear and renewable energy

Framatome receives two patent awards for nuclear innovations

Quake hits near Iran nuclear power plant

TECH SPACE
New catalyst turns ammonia into an innovative clean fuel

Carbon capture could be a financial opportunity for US biofuels

Wood formation model to fuel progress in bioenergy, paper, new applications

Research shows how genetics can contribute for advances in 2G ethanol production

TECH SPACE
Canadian pipeline fight may have U.S. consequences

Gas prices could be testing a psychological tipping point

ISIL activity is not funded by oil, study suggests

Crude oil prices threaten to erase the Netanyahu premium

TECH SPACE
Dramatic action needed on climate change: UN

Scientists project a drier Amazon and wetter Indonesia in the future

Saskatchewan province goes to court to fight Canada carbon tax

In southern Iraq, drought tightens its grip









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.