Subscribe free to our newsletters via your
. Energy News .




WATER WORLD
Want ripples on your icicles then add salt
by Staff Writers
Toronto, Canada (SPX) Oct 15, 2013


This is a natural ripply icicle, collected to measure water composition. Image courtesy Stephen Morris.

Though it's barely the beginning of autumn, scientists at the University of Toronto are one step closer to explaining why winter's icicles form with Michelin Man-like ripples on their elongated shapes.

Experimental physicist Stephen Morris and PhD candidate Antony Szu-Han Chen were spurred to investigate by the ripples that appear around the circumference of icicles that occur naturally. It has been theorized that the ripples are the result of surface tension effects in the thin water film that flows over the ice as it forms. Their investigation revealed that the actual culprit is salt.

"Nobody has systematically investigated what causes the ripples so we began growing them in the lab," said Chen, lead author of a paper published online this week in New Journal of Physics. Accounting for key factors that influence the shape of an icicle as it forms in nature - ambient temperature, flow rate of water and the motion of the air surrounding it - the researchers experimented with the composition of the source water.

"We had already tried Toronto tap water and found that it formed ripply laboratory icicles, when distilled water didn't," said Morris. "We also confirmed that melted rippled icicles taken from Toronto garages were very slightly salty, so that's what led us to pursue the composition factor."

Using pure distilled water, distilled water with small quantities of sodium chloride added, and Toronto tap water - which contains sodium chloride as well as many other impurities - they produced 67 samples grown under a broad range of conditions. The evolution of the icicle shapes over time was acquired from digital images using detection of their edges, which were then analyzed with computer image processing.

Ripple growth was not observed on distilled water icicles, whereas saltier icicles showed clear ripples that appear in a patchy way and sometimes grew as large as a few millimetres. The ripples were seen to move slowly upward during the icicle growth, though the researchers note that both the speed and direction of the ripple motion could vary depending on the concentration of dissolved salt.

Morris and Chen found that ripples only became apparent at the remarkably low salinity of the water with 20 mg of salt per litre. This level, in fact, is a considerably lower level of impurity than found in common tap water.

"We even added a non-ionic ingredient to the distilled water to reduce the surface tension of the thin film of water flowing over the icicle, and it didn't produce ripples," said Chen. "Instead, ripples emerge only on icicles grown from water with dissolved ionic impurities."

"Our motivation is pure curiosity about natural patterns, but the study of ice growth has serious applications, including ice accumulation on airplanes, ships and power lines," said Morris. "This result is totally unexpected, not just by us before we did this, but by theorists and experimentalists in our field who study ice dynamics and pattern formation."

"No theory accounts for the effect of salt, so the shape of icicles and the reason for their ripples are still mysteries. Except we now know that a little salt is required in the recipe."

.


Related Links
University of Toronto
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Complex relationship between phosphorus and nitrogen removal in lakes
Minneapolis MN (SPX) Oct 15, 2013
In the land of 10,000 lakes, one lake has been the starting place for research with implications for big lakes around the world. According to a study published online this week in Science, University of Minnesota researchers, building from studies of nitrogen levels in Lake Superior, uncovered a good news/bad news scenario for lake health that has long-term, global implications for pollution con ... read more


WATER WORLD
US push for electric power surge in Africa hits climate snag

Asian growth changing global energy landscape

Global action needed for energy 'trilemma'

Global energy meet highlights challenge of growing demand

WATER WORLD
Radioactive shale gas contaminants found at wastewater discharge site

Don't Be Fooled by Libya - This is a Failed State

Clues to foam formation could help find oil

Russian court rules to keep more Greenpeace activists in jail

WATER WORLD
Installation of the first AREVA turbines at Trianel Windpark Borkum and Global Tech 1

Trump's suit to halt wind farm project to be heard in November

Ireland connects first community-owned wind farm to grid

Moventas significantly expands wind footprint

WATER WORLD
ET Solar Provides Solar Panels for Two Utility Projects in Chile

World First for Stand-Alone, Solar-Powered Lighting Column

UMD Robotic Bird Harvests Solar Energy

Researchers find rust can power up artificial photosynthesis

WATER WORLD
Once-in-a-decade typhoon heads for Japan nuclear plant

Japan nuclear export parts not safety checked: report

IAEA to advise Japan on Fukushima clean-up

Nuclear power still key to Japan energy mix: officials

WATER WORLD
Metabolically engineered E. coli producing phenol

Team uses a cellulosic biofuels byproduct to increase ethanol yield

Working together: bacteria join forces to produce electricity

UCLA engineers develop new metabolic pathway to more efficiently convert sugars into biofuels

WATER WORLD
Ten Years of Chinese Astronauts

NASA vows to review ban on Chinese astronomers

China criticises US space agency over 'discrimination'

NASA ban on Chinese scientists 'inaccurate': lawmaker

WATER WORLD
US Supreme Court agrees to hear greenhouse gas cases

Terrestrial ecosystems at risk of major shifts as temperatures increase

Study in Nature reveals urgent new time frame for climate change

Radical climate change just around the corner: study




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement