Energy News  
MARSDAILY
WVU space robotics research helps Mars rovers find their footing
by Staff Writers
Morgantown WV (SPX) Aug 12, 2022

illustration only

West Virginia University scientists have developed a way for extraplanetary rovers to use nonvisual information to maneuver over treacherous terrain. This research aims to prevent losses like that of the Martian exploration rover Spirit, which ceased communications after its wheels became trapped in invisibly shifting sands in 2010.

Space roboticist Cagri Kilic, a Statler College of Engineering postdoctoral research fellow in the Department of Mechanical and Aerospace Engineeringat the WVU Navigation Laboratory, led research on preventing slips and stumbles in planetary rovers that will be featured in a Field Robotics paper he coauthored with aerospace engineering associate professors Yu Gu and Jason Gross.

Supported by funding from NASA's Established Program to Stimulate Competitive Research, Kilic, Gu and Gross have found a way to help a rover feel its way forward, using only its existing sensors, when visual data is not available or reliable.??

Darkness and extreme brightness can both make it hard for rovers to depend on visual data for navigation, but Kilic's work also focuses on helping the rover in situations where aspects of the physical terrain are difficult to read based on a visual inspection: steep slopes, loose debris, layers of different sands, soft soil or salt flats like those of Europa, Jupiter's moon.?

Many of those terrain features can be found at the burnt-coal ash piles in Point Marion, Pennsylvania, where Kilic's team tests their software on WVU's Pathfinder rover.??

"The area was actually found when we were doing some tests for the Mars Society's University Rover Challenge," he said. "As soon as I saw the environment, I wanted to look at the chemical composition of the area because it was looking like Mars."??

In Point Marion, Kilic's team puts Pathfinder, a lightweight, small-scale test rover, through its paces, testing algorithms that allow it to adjust its course or speed, for example, based on the information it gets from onboard instruments like accelerometers, gyroscopes, magnetometers and odometers, rather than on what it can detect through its camera lens. Those instruments tell Kilic's software about orientation, velocity and position, helping the rover and the engineers who guide it understand and respond to the environment.?

"Mars rovers can understand if there is an obstacle in front of them," Kilic said. "They can detect wheel slippage by using their cameras, they can tell if a wheel is spinning on a rock and so on. And they can adjust their navigation by changing their path, changing individual wheel speeds or stopping to wait for the command from the engineers on Earth."?

Kilic stressed that when visual data is available, the rovers' current visual navigation system is "almost perfect - 99% success rate. The problem is that it can only work when there are sufficient features in the environment." The sameness of a landscape is what gives a rover trouble when it's relying on sight to get around.?

According to Kilic, it's "homogeneous, visually-low feature environments similar to deserts, ocean or tundra on our planet" that are a problem for rovers not just on Mars, but also on Earth's moon and potentially on Europa, where the presence of ice has excited scientific speculation about habitability. Kilic said he tried to make the technology "as general as possible for use in any robot on any extraterrestrial body."??

Wherever a rover can go in our solar system, Kilic's algorithms can help protect it against a fall or entrapment.??

"Of course, the software needs to be tuned for a particular rover, adjusting to its wheel dimensions, its inertial measurement unit characteristics, but it does not need any additional sensors," he said.?

Still, Kilic's research specifically aims to benefit the rovers that are currently exploring Mars: Curiosity, Perseverance and Zhurong. Mars is Kilic's priority because "Martian soil is exceptionally challenging for traversability. Even throughout a single drive, Mars rovers traverse on various terrains with different slopes."??

To realize that goal, Kilic will now conduct additional tests with different rovers. His method already boasts slip detection accuracy of more than 92% for distances of around 150 meters and drains fewer computational resources than visually based navigation, enabling rovers using Kilic's software to travel faster and stop less often than when they rely on visual signals.?

Although the research still has some distance to travel, Kilic said the results to date "show us that we" - and the rovers - "are on the right path."?

Research Report:Proprioceptive Slip Detection for Planetary Rovers in Perceptually Degraded Extraterrestrial Environments?


Related Links
West Virginia University
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
NASA's Perseverance cores 12th sample, team assessing rover's coring bit
Pasadena CA (JPL) Aug 08, 2022
Images and data downlinked Thursday from Perseverance show that we've successfully cored, sealed, and stored our 12th sample of the mission. As the team always does, images of several sample collection system components were taken after completion of the coring activity. In those images, two small pieces of debris were visible - a small object on the coring bit (stored in the bit carousel) and a small hairline object on the drill chuck. The team is now looking into the origin of the debris, and wh ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
China factories ration power as heatwave sends demand soaring

Chinese city dims lights in heatwave power crunch

US lawmakers pass landmark climate, health plan in big win for Biden

Five million in southwest China face power cuts in heatwave

MARSDAILY
Researchers develop new faster charging hydrogen fuel cell

China's CATL to build battery plant in Hungary

Surrey's prototype battery only needs seconds of sunlight to keep smart wearables charged

Fusion simulation code developed to project fusion instabilities in TAE

MARSDAILY
Europe and China operate the largest number of offshore wind farms

A new method boosts wind farms' energy output, without new equipment

Modern wind turbines can more than compensate for decline in global wind resource

End-of-life plan needed for tens of thousands of wind turbine blades

MARSDAILY
Eco-friendly solar cells improve efficiency by resolving defects

Colorful solar panels could make the technology more attractive

Building blocks of the future for photovoltaics

Cheaper, changing and crucial: the rise of solar power

MARSDAILY
Ukraine, Russia accuse each other of nuclear plant strikes

NATO says 'urgent' need to inspect Ukraine nuclear plant

Russia says 'no heavy weapons' deployed at Ukraine nuclear plant

China reconnects nuclear reactor after shutdown due to damage

MARSDAILY
Turning fish waste into quality carbon-based nanomaterial

Brazilian scientists reveal method of converting methane gas into liquid methanol

MSU researchers create method for breaking down plant materials for earth-friendly energy

Solar-powered chemistry uses CO2 and H2O to make feedstock for fuels, chemicals

MARSDAILY
Oil prices fall but inflation stays high

Oil majors' climate visions 'inconsistent' with Paris targets

Net zero, Russia war driving nascent hydrogen economy

New photocatalyst boosts water splitting efficiency for clean hydrogen production

MARSDAILY
US communities are mapping heat islands to boost climate resilience

Biden signs major climate change, health care law

Iraq's Garden of Eden now 'like a desert'

Wales declares drought in several regions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.