![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Pasadena CA (SPX) Sep 27, 2005 A trio of surprise discoveries from NASA's Voyager 1 spacecraft reveals intriguing new information about our solar system's final frontier. The findings appear in the Sept. 23 issue of Science. The surprises come as the hardy, long-lived spacecraft approaches the edge of our solar system, called the heliopause, where the sun's influence ends and the solar wind smashes into the thin gas between the stars. "These are just the most recent of many surprises Voyager has revealed in its 28-year journey of discovery. They tell us that the interaction of our sun with the surrounding interstellar matter from other stars is more dynamic and complex than we had imagined, and that there is more yet to be learned as Voyager begins the final leg of its race to the edge of interstellar space," said Dr. Edward Stone, Voyager project scientist at the California Institute of Technology in Pasadena. Voyager 1 is expected to pass beyond the heliopause into interstellar space in eight to 10 years, with Voyager 2 expected to follow about five years later. Voyager 1 has already passed the termination shock, where the million-mile-per-hour solar wind abruptly slows and becomes denser and hotter as it presses against interstellar gas. It was expected the wind beyond the shock would slow to a few hundred thousand miles per hour. But the Voyager scientists were surprised to find that the speed was much less, and at times the wind appeared to be flowing back inward toward the sun. "This could mean that the outward pressure of wind was decreasing as the sun entered the less active phase of its 11-year cycle of sunspot activity," said Stone. Another surprise: the direction of the interplanetary magnetic field in the outer solar system varied more slowly beyond the termination shock. As the sun rotates every 26 days, the direction of the field alternates every 13 days. That field is carried out by the solar wind, with the alternating directions forming a pattern of zebra stripes moving outward past the spacecraft. One could imagine a zebra with giant "magnetic stripes" running past the spacecraft and Voyager 1 "observing" an alternating stripe every 13 days. After the shock, the "zebra" with its stripe pattern was moving at nearly the same speed as Voyager, so that it took more than 100 days for the stripe to pass the spacecraft and for the magnetic field to switch directions. Perhaps the most puzzling surprise is what Voyager 1 did not find at the shock. It had been predicted that interstellar ions would bounce back and forth across the shock, slowly gaining energy with each bounce to become high speed cosmic rays. Because of this, scientists expected those cosmic ray ions would become most intense at the shock. However, the intensity did not reach a maximum at the shock, but has been steadily increasing as Voyager 1 has been moving farther beyond the shock. This means that the source of those cosmic rays is in a region of the outer solar system yet to be discovered. Still operating in remote, cold and dark conditions billions of miles from the sun, the Voyager 1 and 2 spacecraft owe their longevity to radioisotope thermoelectric generators which produce electricity from the heat generated by the natural decay of plutonium. Caltech manages NASA's Jet Propulsion Laboratory in Pasadena, which built and operates Voyager 1 2. NASA's Goddard Space Flight Center, Greenbelt, Md., built the magnetometers. Community Email This Article Comment On This Article Related Links Voyager at JPL SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Space Tourism, Space Transport and Space Exploration News
![]() ![]() Masten Space Systems announced Wednesday that it strongly supported the recent agreement between NASA and the X Prize Foundation to develop two suborbital Centennial Challenges and that, pending announcements on rules, it looked forward to participating. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |