Energy News  
TECH SPACE
Virtual contact lenses for radar satellites
by Staff Writers
Munich, Germany (SPX) Apr 18, 2018

The ocean east of Greenland is covered by ice all year round (the white line shows the boundary of the oceanic ice). The water underneath is subject to a dynamic seasonal process and is influenced by the currents of the Atlantic ocean. (Illustration: Marcello Passaro, Felix Muller / DGFI-TUM)

Radar satellites supply the data used to map sea level and ocean currents. However, up until now the radar's "eyes" have been blind where the oceans are covered by ice. Researchers at the Technical University of Munich (TUM) have now developed a new analysis method to solve this problem.

The melting of the polar ice cap would have a drastic effect: Sea level would rise by several meters around the world, impacting hundreds of millions of people who live close to coasts. "This means one of the most important questions of our time is how climate change is affecting the polar regions," explains Dr. Marcello Passaro of the TUM German Geodetic Research Institute.

The blind spot of the radar "eye"
But changes in sea level and ocean currents in the ice-covered regions of the Arctic and Antarctic in particular are very difficult to detect. The reason: The radar signals of the altimeter satellites that have been surveying the surfaces of the earth and oceans for more than two decades are reflected by the ice at the poles. This renders the water underneath the ice invisible.

But ocean water also passes through cracks and openings in the permanent ice, reaching the surface. "These patches of water are however very small and the signals are highly distorted by the surrounding ice.

Here standard evaluation methods like those used for measurements made on the open seas are incapable of returning reliable results," Passaro points out. Together with an international team he has now developed a data analysis method which sharpens the focus of the radar's eyes.

An algorithm for all occasions
The core of this virtual "contact lens" is the adaptive algorithm ALES+, (Adaptive Leading Edge Subwaveform). ALES+ automatically identifies the portion of the radar signal which is reflected by water and derives sea level values using this information only.

This makes it possible to precisely measure the altitude of the ocean water which reaches the surface through ice cracks and openings. By comparing several years of measurements, climate researchers and oceanographers can now draw conclusions about changes in sea level and ocean currents.

"The special thing about our method is that it is adaptive," Passaro notes.

"We can use one and the same algorithm to measure sea level in both open and ice-covered ocean areas. ALES+ can also be used for coastal waters, lakes and rivers. Here the signals are highly varied, but always exhibit certain characteristic properties which the system then learns."

The scientists were able to use a test scenario in the Greenland Sea to demonstrate that ALES+ returns water levels for ice-covered and open ocean regions which are significantly more precise than the results of previous evaluation methods.

Passaro, M., S. Kildegaard Rose, O. Andersen, E. Boergens, F. M. Calafat, D. Dettmering, J. Benveniste: ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters. Remote Sensing of Environment, 2018, DOI: 10.1016/j.rse.2018.02.074


Related Links
Technical University of Munich
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Raytheon awarded contract for AN/ALR-69A radar receiver system
Washington (UPI) Mar 30, 2018
The U.S. Air Force has awarded a contract to Raytheon Self Protect Services for work on its AN/ALR-69A digital Radar Warning Receiver system. The indefinite-quantity contract, worth $460 million, includes the design, creation and testing of line replaceable units and shop replaceable units for the system, the Defense Department announced on Thursday. Raytheon, a Massachusetts-based company, submitted the only bid for the contract. It will work on the deal in Goleta, Calif., and Forest, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Carbon taxes can be both fair and effective, study shows

Trump rolls back Obama-era fuel efficiency rules

Lights out for world landmarks in nod to nature

Puerto Rico power grid snaps, nearly 1 million in the dark

TECH SPACE
Army research rejuvenates older zinc batteries

Filling lithium-ion cells faster

Tungsten 'too brittle' for nuclear fusion reactors

New technology could wean the battery world off cobalt

TECH SPACE
Alberta proposes more renewable energy incentives

Transformer station for giant German wind farm positioned

Scotland's largest offshore wind farm close to operational

Construction complete ahead of schedule at Sommette wind farm, France

TECH SPACE
MicroLink Devices Achieves Certified 37.75% Solar Cell Power Conversion Efficiency

DoE offers $20 Million in New Projects to Lower Cost of Power Electronics in Solar

ESPResSo aims to make perovskite solar cells affordable

A whispering gallery for light boosts solar cells

TECH SPACE
Quake hits near Iran nuclear power plant

Namibia president denies graft in nuclear deal

NRC approval brings Framatome's fuel technology closer to market

Framatome displays year of powerful performance, supports 44 nuclear power outages in 2017

TECH SPACE
Research shows how genetics can contribute for advances in 2G ethanol production

Algae-forestry, bioenergy mix could help make CO2 vanish from thin air

Removing the brakes on plant oil production

NUS engineers pioneer greener and cheaper technique for biofuel production

TECH SPACE
Risk of a hot market drags oil prices lower

Algeria gets gas and renewable energy support

Oil Search Ltd. hurt by Papua New Guinea quake

With gas prices moving higher, it may be time to watch spending

TECH SPACE
Trudeau urges nations to make Paris climate deal 'reality'

Unusual climate during Roman times plunged Eurasia into hunger and disease

More frequent droughts mean fewer flowers for bees

October trial set for US kids' climate change lawsuit









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.