Energy News
TIME AND SPACE
Unveiling the Quantum Enigma: Phase Transitions in Metals
Artist's view of a quasiparticle, - composed of localized and mobile electrons, here broken up by an ultrashort light pulse.
Unveiling the Quantum Enigma: Phase Transitions in Metals
by Robert Schreiber
Berlin, Germany (SPX) Aug 01, 2023

In a world defined by constant change, phase transitions are universal phenomena. These transitions are evident in simple processes like water turning to ice or more complex ones such as the change in ferromagnetic properties in iron. Yet, some phase transitions are not so readily observed in our macroscopic world; they only occur at the quantum level due to the unique laws that govern the tiniest particles in our universe. A breakthrough study by scientists from the University of Bonn and ETH Zurich sheds light on these less understood transitions, specifically involving electrons. The study, recently published in the journal Nature Physics, opens up new avenues for exploring the quantum world.

In everyday scenarios, phase transitions can be abrupt, like water freezing into ice, resulting in an instant change in physical properties. On the other hand, some transitions are gradual. Consider an iron magnet heated to 760 degrees Celsius; it does not lose its ferromagnetic properties all at once but transitions slowly into a paramagnetic state. This transition exhibits a characteristic 'critical slowing down', where the change progressively slows as the energy difference between the two phases diminishes.

However, this typical behaviour is commonly associated with bosons, particles that mediate interactions such as magnetism. This does not pertain to fermions like electrons, the primary constituents of matter, due to a fundamental law of nature that prevents their destruction. Prof. Dr. Hans Kroha of the Bethe Center for Theoretical Physics at the University of Bonn states, "Fermions, however, cannot be destroyed due to fundamental laws of nature and therefore cannot disappear. That's why normally they are never involved in phase transitions."

But the team's groundbreaking research turns this conventional wisdom on its head when it comes to certain unique quantum materials. In these materials, some electrons can exist in a superposition state, forming what are known as quasiparticles. These quasiparticles are both mobile and immobile at the same time - a paradox only possible in the quantum world. Unlike ordinary electrons, these quasiparticles can be destroyed during a phase transition, enabling the observation of properties such as critical slowing down in these instances.

Previously, scientists could only infer this effect indirectly from experiments. However, this collaborative study led by theoretical physicist Hans Kroha, with Manfred Fiebig's experimental group at ETH Zurich, has pioneered a method that directly identifies the collapse of quasiparticles at a phase transition, specifically the associated critical slowing down.

In sharing their findings, Kroha, also a member of the Transdisciplinary Research Area "Matter" at the University of Bonn and the Cluster of Excellence "Matter and Light for Quantum Computing" of the German Research Foundation, said, "This has enabled us to show for the first time directly that such a slowdown can also occur in fermions."

This insight significantly enhances our understanding of phase transitions in the quantum realm. Furthermore, the implications of this research may extend beyond theoretical physics, potentially proving valuable in developing quantum information technology in the future.

Research Report:Critical slowing down near a magnetic quantum phase transition with fermionic breakdown

Related Links
University of Bonn
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Precision Laser Spectroscopy and the Quantum Motion of Atomic Nuclei
Duesseldorf, Germany (SPX) Jul 31, 2023
Physicists led by Professor Stephan Schiller, Ph.D., from Heinrich Heine University Dusseldorf (HHU) have taken us one step closer to understanding the subtleties of atomic behavior by employing ultra-high-precision laser spectroscopy on a simple molecule. Their breakthrough research, published in the scientific journal Nature Physics, sheds light on the wave-like vibrations of atomic nuclei and asserts the precision of established forces between atomic nuclei. For almost a century, simple atoms h ... read more

TIME AND SPACE
UK climate campaigners fear net zero policies under threat

Electrical fire sparks nationwide power outage in Iraq

U.S. pulls plug on incandescent light bulbs as new ban goes into effect

In a warming world, is an air-conditioned future inevitable?

TIME AND SPACE
MIT engineers create an energy-storing supercapacitor from ancient materials

New approach to fuel cell manufacturing could reduce cost, increase availability

Less power, lower emissions: improving AC technology

Fusion model hot off the wall

TIME AND SPACE
U.S. identifies three new areas for potential offshore wind energy development

Biden to visit Philly Shipyard to announce construction of offshore wind vessel

New transmission line to carry wind energy electricity from Wyoming to Nevada

Brazil faces dilemma: endangered macaw vs. wind farm

TIME AND SPACE
Solar batteries: a new material makes it possible to simultaneously absorb light and store energy

China's GalaxySpace Debuts Revolutionary Flexible Solar Wing Satellite

New robot boosts solar energy research

AI and satellite imagery transform solar energy potential mapping in China

TIME AND SPACE
Niger coup raises questions about uranium dependence

First US nuclear reactor in seven years goes online

Framatome's accident tolerant fuel technology one step closer to market readiness

EU says no uranium 'supply risk' after Niger coup

TIME AND SPACE
Harnessing synthetic biology to make sustainable alternatives to petroleum products

University of Illinois study finds turning food waste into bioenergy can become a profitable industry

New technology will let farmers produce their own fertilizer and e-fuels

Clean, sustainable fuels made 'from thin air' and plastic waste

TIME AND SPACE
UK to issue 'hundreds' of new oil, gas licences in North Sea

Berlin hails 'progress' in EU talks on hydrogen plants

Iraq and Kuwait seek to solve contested border issue

NASA Armstrong sensor technology helping turn oxygen into fuel

TIME AND SPACE
UAE vows to allow 'peaceful' assembly of climate activists at COP28

Asset managers not on track for climate target: report

Litigation increasingly used to fight climate change: UN

British professor elected to lead UN climate panel in key decade

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.