Energy News  
ENERGY TECH
Unveiling distribution of defects in proton conductors
by Staff Writers
Sendai, Japan (SPX) Oct 20, 2015


This figure shows the crystal structure of Sc-doped BaZrO3 to be used as an electrolyte material in intermediate temperature solid oxide fuel cells (IT-SOFCs). By using a nuclear magnetic resonance (NMR) technique, the distribution of proton and oxygen vacancy in Sc-doped BaZrO3 was clarified. Green, blue, purple and red spheres represent Ba, Zr, Sc cations and oxide ions in the Sc-doped BaZrO3, respectively. In this material, a proton (gold sphere) having one positive charge is known to be trapped around the Sc cation (purple sphere) since the Sc site possesses one negative charge; the trapped proton is the cause of low proton conductivity at the intermediate temperature range. Meanwhile, when an oxide ion (red sphere) is vacant (center position in this case), the pair of the vacancy and Sc now possesses one positive charge. The positive charge works to liberate the trapped proton from nearby Sc to nearby Zr (blue sphere). This change in proton distribution is believed to improve the proton conductivity of Sc-doped BaZrO3. Image courtesy Hitoshi Takamura. For a larger version of this image please go here.

Solid oxide fuel cells (SOFC), recently used as a power source for households in Japan, have several drawbacks such as high-cost, material degradation and long start-up time derived from high operating temperatures up to 750C.

Lowering the operating temperature to an "intermediate" range of 300-500C would, in effect, enable the use of low-cost materials and allow for a quicker start-up which, in turn, could lead to wider commercial use and application to a mobile power source.

A team of researchers at Tohoku University in Japan has developed a new idea to improve proton conductivity in rare-earth doped BaZrO3 perovskite-type proton conductors. Rare-earth doped BaZrO3 is a promising candidate material for intermediate temperature SOFCs. However, further improvement of proton conductivity is required for practical use.

In the journal Chemistry of Materials, from ACS publications, the researchers suggest a strategy to improve the mobility of protons by controlling oxygen vacancies as well as protons. Protons are known to be "trapped" around a rare-earth element in the doped BaZrO3 which lowers the proton conductivity. This proton trapping is originated from the electrostatic attractive interaction between a negatively charged rare-earth element and a positively charged proton.

However, when the pairing of a rare-earth element and an oxygen vacancy is created in the material, this pair possesses a positive net charge and therefore, inhibits the trapping of protons due to the electrostatic repulsive interaction.

In developing this idea, the team clarified the distribution of protons and oxygen vacancies in Sc-doped BaZrO3 by combining nuclear magnetic resonance spectroscopy and thermogravimetric analysis. When a certain amount of oxygen vacancies (4 mol%) exists in the material, the proton concentration around Zr is higher than that around the rare-earth element which indicates protons with less influence from the trapping effects of the rare-earth element (Fig. 1).

"Because the attractive interaction between the rare-earth element and protons causes the proton trapping, introducing another defect having positive charges - that is to say, oxygen vacancy - appears to liberate the trapped protons," said Hitoshi Takamura who led the research at Tohoku University. He and his colleagues have clarified that the interaction between the rare-earth element and oxygen vacancy does prevent the proton trapping.

"This idea can be applied not only to the development of ionic conductors but also other materials, such as fluorescent and catalyst materials, since the interaction of defects plays an important role in these materials," said Takamura. "If the distribution of defects becomes controllable, we can design a variety of functional materials. That is our goal for this research."

Authors: Itaru Oikawa and Hitoshi Takamura; Title: Correlation among Oxygen Vacancies, Protonic Defects, and the Acceptor Dopant in Sc-Doped BaZrO3 Studied by 45Sc Nuclear Magnetic Resonance; Journal: Chemistry of Materials.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Tohoku University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
With this new universal wireless charger, compatibility won't be an issue
San Diego CA (SPX) Oct 15, 2015
A wireless charger that's compatible with different consumer electronics from different brands is one step closer to becoming a reality thanks to research by electrical engineers at the University of California, San Diego. Researchers have developed a dual frequency wireless charging platform that could be used to charge multiple devices, such as smartphones, smartwatches, laptops and tabl ... read more


ENERGY TECH
To reach CO2, energy goals, combine technologies with stable policies

EDF for carbon price floor

Shift from fossil fuels risks popping 'carbon bubble': World Bank

DOE selects UC Berkeley to lead US-China energy and water consortium

ENERGY TECH
Breakthrough to the development of energy-saving devices for the next-gen

Unveiling distribution of defects in proton conductors

What are these nanostars in 2-D superconductor supposed to mean

New Battery Storage Software Jump-Starts Marketing and Sales

ENERGY TECH
E.ON finishes German wind farm

Adwen and IWES sign agreement for the testing of 8MW turbine

US has fallen behind in offshore wind power

Moventas rolls out breakthrough up-tower planetary repairs for GE fleet

ENERGY TECH
Scientists demonstrate how to improve ultrathin CIGSe solar cells by nanoparticles

Solar energy's land-use impact

Study urges optimization of solar energy development

Strathcona secures $250 US Million Financing with 1784 Solar, LLC

ENERGY TECH
China, Britain strike 'historic' nuclear deal

Saudi, Hungary sign nuclear pact

China 'to take one-third stake' in UK nuclear plant

Areva job cuts fuel union security concerns

ENERGY TECH
New UT study highlights environmental, economic shortcomings of federal biofuel laws

Light emitting diodes made from food and beverage waste

Study: Africa's urban waste could produce rural electricity

Researchers create inside-out plants to watch how cellulose forms

ENERGY TECH
China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

ENERGY TECH
World split over carbon-cutting in climate battle

Frustration mounts as time runs out at climate talks

Canada's Trudeau under low-carbon pressure

'Critical week' of climate talks back on track









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.