Energy News  
Unusual Meteorite Unlocks Treasure Trove Of Solar System Secrets

Dr. Munir Humayun.

Tallahassee FL (SPX) Sep 28, 2005
An unusual meteorite that fell on a frozen lake in Canada five years ago has led a Florida State University geochemist to a breakthrough in understanding the origin of the chemical elements that make up our solar system.

Professor Munir Humayun of the National High Magnetic Field Laboratory and the geological sciences department at FSU and Alan Brandon of NASA discovered an isotopic anomaly in the rare element osmium in primitive meteorites. The anomalous osmium was derived from small stars with a higher neutron density than that which formed our solar system.

The findings of the researchers, who also included colleagues from the University of Maryland and Bern University in Switzerland, were recently published in the journal Science.

"Our new data enabled us to catch a glimpse of the different star types that contributed elements to the solar system, the parental stars of our chemical matter," Humayun said. "It opens a treasure trove of prospects for exploring the formation of the elements."

For about 50 years, scientists have known that all the elements beyond iron in the periodic table were made in stars by up to three nuclear processes. Osmium is mainly formed by two of those processes, the so-called s-process in which neutrons are slowly added to nuclei over a period of perhaps thousands of years in aging, medium-size stars and the r-process that occurs in supernovae in which neutrons are pumped into nuclei at a rate of hundreds of neutrons in a few seconds.

The new data gathered by Humayun's team not only shows the different star types that contribute elements to the solar system, it also will be used to test astrophysical models of production of the chemical elements at a more sophisticated level than previously possible, he said.

Humayun and colleagues studied samples from an extremely fragile meteorite that fell on Tagish Lake on Jan. 18, 2000. Unlike iron meteorites, primitive meteorites like this one are not preserved long on the Earth's surface because they disintegrate and form mud when exposed to water. This one was retrieved within 48 hours of its fall in the dead of an Arctic winter.

Most meteorites have a uniform osmium isotopic distribution, but Humayun's team found that osmium extracted from the Tagish Lake meteorite was deficient in s-process osmium. They are the first to report an anomaly in the isotopic makeup of the element osmium from meteorites.

Other researchers have found isotope anomalies in several other elements in some primitive meteorites, but not in others. Because of the disparity, scientists believed that the ashes of stars that preceded the solar system must have been sprinkled in a non-uniform way into the solar nebula, the disk of gas and dust that formed the sun, planets and meteorites. Scientists had hypothesized that some of the dust could have been created by an active nearby star.

Humayun's findings challenge that explanation. He believes that the anomaly is an expression of presolar stardust that survived the homogenization that affected nearly all other meteorites.

Typically, stardust accretes to form meteorites and is then heated by radioactivity - a process that destroys the silicon carbide grains that are the carriers of the anomaly. But in the case of the meteorites with osmium isotopic anomalies, the heat was not significant enough to destroy the silicon carbide.

"The previous interpretation of incomplete mixing of different sources of dust at the scale of the solar nebula no longer seems tenable," he said.

"We now interpret those anomalies as incomplete dissolution of silicon carbide grains that carried traces of molybdenum, ruthenium and osmium. These anomalies reveal that the raw materials from which our solar system was built are preserved in a few exceptional meteorites, from which we can now recover the prehistory of our solar system."

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Asteroid and Comet Mission News, Science and Technology



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NASA'S Spitzer Finds Possible Comet Dust Around Dead Star
Pasadena CA (SPX) Jan 12, 2006
NASA's Spitzer Space Telescope has spotted what may be comet dust sprinkled around the white dwarf star G29-38, which died approximately 500 million years ago.







  • Hybrid Grass May Prove To Be Valuable Fuel Source
  • Minnesota Becomes First US State To Require Biodiesel
  • DoD Contracts Ultralife For Next Gen II Small Cylindrical Military Battery
  • Investment In Energy R&D Declines Despite Soaring Prices, Supply Problems

  • Russia Ready To Join US-Led Uranium Fuel Bank
  • Key Signatories Urged To Ratify Nuclear Test Ban Treaty
  • Scorpene Deal Will Ensure Nuke Supply
  • Russia To Build Nuke Waste Facility

  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source



  • Crop Scientists Improve "Supergrain" For Impoverished Farmers
  • Gourmet Space Dinner On Greenland Icecap
  • Sophisticated Forecasts Help India's Farmers Survive Patchy Monsoon
  • Analysis: N.Korea No Longer Wants Food Aid?

  • Solar Cars Driving Towards A Hydrogen Future
  • Mapflow And DTO Announce Dublin Satellite Tolling Study
  • German Car Makers Scramble To Jump On Hybrid Engine Bandwagon
  • Could Katrina Kill The SUV?

  • Nigeria To Buy Fighter Planes From China
  • First Joint Air Dominance Center In The World To Open
  • China's Top Airplane Maker Aims To Become Major Global Player
  • China's Aviation Boom Drives World Market

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement