Subscribe free to our newsletters via your
. Energy News .




WATER WORLD
Unstable Atlantic deep ocean circulation under future climate conditions
by Staff Writers
Bergen, Norway (SPX) Feb 28, 2014


Eirik Vinje Galaasen is preparing foraminifera shells from the last interglacial period for stable isotope analyses in the massspectrometer. Credit: Photo: Gudrun Sylte.

Today, deep waters formed in the northern North Atlantic fill approximately half of the deep ocean globally. In the process, this impacts on the circum-Atlantic climate, regional sea level, and soak up much of the excess atmospheric carbon dioxide from industrialisation - helping to moderate the effects of global warming.

Changes in this circulation mode are considered a potential tipping point in future climate change that could have widespread and long-lasting impacts including on regional sea level, the intensity and pacing of Sahel droughts, and the pattern and rate of ocean acidification and CO2 sequestration.

Until now, this pattern of circulation has been considered relatively stable during warm climate states such as those projected for the end of the century. A new study led by researchers from the Bjerknes Centre of Climate Research at the University of Bergen (UiB) and Uni Research in Norway, suggests that Atlantic deep water formation may be much more fragile than previously realised.

The researchers Eirik Vinje Galaasen (UiB), Ulysses Ninnemann (UiB), Nil Irvali (Uni Research), and Helga (Kikki) Kleiven (UiB) and their colleagues from Rutgers University, USA (Professor Yair Rosenthal), Laboratoire des Sciences du Climat et de l'Environnement, France (Research Scientist Catherine Kissel) and the University of Cambridge, UK (Professor David Hodell) used the shells of tiny single-celled, bottom-dwelling foraminifera found in marine sediment in the North Atlantic Ocean to reconstruct the surface ocean conditions and concomitant deep ocean circulation of about 125,000 years ago.

This is the last interglacial period, when the North Atlantic was warmer, fresher and sea level was higher than it is today and looked a lot like what climate models predict it will look by the end of this century.

"At that time, there were a series of sudden and large reductions in the influence of these North Atlantic waters in the deep ocean. These deep water reductions occurred repeatedly, each lasting for some centuries before bouncing back. The unstable circulation operated as if it was near a threshold and flickered back and forth across it," says Eirik Vinje Galaasen, a PhD student and now researcher at UiB's Department of Earth Science, who is the lead author of the paper published in the journal Science.

"These types of changes hadn't been noticed before because they are so short-lived. Geologists hadn't focused on century scale ocean changes because they are difficult to detect," adds Professor Ulysses Ninnemann, from UiB's Department of Earth Science and Galaasen's PhD adviser.

"Our study demonstrates that deep water formation can be disrupted by the freshening of the regional surface water, which might happen due to enhanced precipitation and glacier melting under future climate change scenarios," says Yair Rosenthal, a co-author on the paper.

The international team studied traces of deep ocean properties imprinted in the sediments on the seafloor. Coring into the seafloor mud they could look back in time to reconstruct changes in the abyssal ocean at a location South of Greenland that is sensitive to North Atlantic Deep Water.

The mud at this location builds up 10?? times as fast as normal, recording much shorter changes than at other sites. Although the changes are short from a geological perspective, a few centuries of reduced deep water could be a big deal for societies that would have to grapple with things like draughts and sea level changes that could accompany them.

No "The Day After Tomorrow" scenario: A popularised notion is that if the ocean circulation declines it could cause large cooling or, as in the case of the Hollywood movie The Day After Tomorrow, a new ice age. Although some cooling did occur locally south of Greenland when the circulation slowed, there was no evidence for really large cooling associated with these changes.

It could be that human beings haven't been able to find it yet, but equally reasonable is that humankind simply don't get really big cooling as the ocean slows down because when it is really warm, sea ice cannot form, and this supercharges the cooling effect of ocean circulation changes. In any event, the super cooling or slide into the next ice age as popularised in a Hollywood blockbuster did not occur.

Will this happen to the future Earth? Many models have actually predicted a slow and gradual decline in North Atlantic circulation over the next century. However, different models offer widely different scenarios for what will happen in the future.

While the climate of the last interglacial is not exactly what will be the case in a future greenhouse world, it does share some features, including being fresher and warmer by a few degrees Celsius in the northern Atlantic.

Training models, if models can capture the types of changes we see in the past, may also be doing a good job at predicting the future. The seafloor evidence suggests that there were large and fast changes in circulation the last time the ocean looked the way it may look by the end of this century.

The Bjerknes Centre is named after Vilhelm Bjerknes and his son Jacob Bjerknes, who were the leading figures of the Bergen School of the physics of atmosphere and ocean. Read more here

.


Related Links
The University of Bergen
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Seed-filled buoys may help restore diverse sea meadows in San Francisco Bay
San Francisco CA (SPX) Feb 27, 2014
A pearl net filled with seedpods, tethered by a rope anchored in the coastal mud but swaying with the tide, could be an especially effective way to restore disappearing marine meadows of eelgrass, according to a new study. The resulting crop of eelgrass grown by SF State researchers is as genetically diverse as the natural eelgrass beds from which the seeds were harvested, said Sarah Cohen ... read more


WATER WORLD
US moves ahead on massive Africa power bid

Renewable Generation up 30% Last Week as Gas Consumption Plummets 35%

US moves ahead on massive Africa power bid

Simple and Elegant Building Energy Modeling for All-A Technology Transfer Tale

WATER WORLD
Swelling oil fund makes every Norwegian a millionaire

ExxonMobil chief, neighbors sue over fracking concerns

Boundless Natural Gas, Boundless Opportunities

Big Step for Next-Gen Fuel Cells and Electrolyzers

WATER WORLD
Draft report finds no reliable link between wind farms and health effects

Wind farms can tame hurricanes: scientists

Czech wind power generation up 'disappointing' 15 percent in 2013

New research blows away claims that aging wind farms are a bad investment

WATER WORLD
Power Electronics PV Plant Takes Chile To 10MW

Ailing German PV panel maker SolarWorld completes restructuring

Superabsorbing Design May Lower Manufacturing Cost of Thin Film Solar Cells

First Utility Scale PV Plant For East Africa

WATER WORLD
Hundreds protest dropped charges over Fukushima crisis

Radiation affects 13 US nuclear plant employees

Obama approves Vietnam nuclear deal

France's Areva posts 3rd straight annual loss

WATER WORLD
Team converts sugarcane to a cold-tolerant, oil-producing crop

Pond-dwelling powerhouse's genome points to its biofuel potential

Sustainable use of energy wood resources shows potential in North-West Russia

Italian farmers hail coming of biomethane production incentives

WATER WORLD
No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

WATER WORLD
Climate change won't reduce deaths in winter

EU environment ministers to debate 2030 climate framework

Drought forces water rationing on millions of Malaysians

A large part of Europe could be flooded by the middle of the century




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.