Energy News
TIME AND SPACE
Unlocking the secrets of spin with high-harmonic probes
The three excitation types included in the theoretical calculations, and the GS density of states.
Unlocking the secrets of spin with high-harmonic probes
by Staff Writers
Boulder CO (SPX) Nov 13, 2023

Deep within every piece of magnetic material, electrons dance to the invisible tune of quantum mechanics. Their spins, akin to tiny atomic tops, dictate the magnetic behavior of the material they inhabit. This microscopic ballet is the cornerstone of magnetic phenomena, and it's these spins that a team of JILA researchers-headed by JILA Fellows and University of Colorado Boulder professors Margaret Murnane and Henry Kapteyn-has learned to control with remarkable precision, potentially redefining the future of electronics and data storage.

In a new Science Advances publication, the JILA team-along with collaborators from universities in Sweden, Greece, and Germany-probed the spin dynamics within a special material known as a Heusler compound: a mixture of metals that behaves like a single magnetic material. For this study, the researchers utilized a compound of cobalt, manganese, and gallium, which behaved as a conductor for electrons whose spins were aligned upwards and as an insulator for electrons whose spins were aligned downwards.

Using a form of light called extreme ultraviolet high-harmonic generation (EUV HHG) as a probe, the researchers could track the re-orientations of the spins inside the compound after exciting it with a femtosecond laser, which caused the sample to change its magnetic properties. The key to accurately interpreting the spin re-orientations was the ability to tune the color of the EUV HHG probe light.

"In the past, people haven't done this color tuning of HHG," explained co-first author and JILA graduate student Sinead Ryan. "Usually, scientists only measured the signal at a few different colors, maybe one or two per magnetic element at most." In a monumental first, the JILA team tuned their EUV HHG light probe across the magnetic resonances of each element within the compound to track the spin changes with a precision down to femtoseconds (a quadrillionth of a second).

"On top of that, we also changed the laser excitation fluence, so we were changing how much power we used to manipulate the spins," Ryan elaborated, highlighting that that step was also an experimental first for this type of research.

Along with their novel approach, the researchers collaborated with theorist and co-first author Mohamed Elhanoty of Uppsala University, who visited JILA, to compare theoretical models of spin changes to their experimental data. Their results showed strong correspondence between data and theory. "We felt that we'd set a new standard with the agreement between the theory and the experiment," added Ryan.

Fine Tuning Light Energy
To dive into the spin dynamics of their Heusler compound, the researchers brought an innovative tool to the table: extreme ultraviolet high-harmonic probes. To produce the probes, the researchers focused 800-nanometer laser light into a tube filled with neon gas, where the laser's electric field pulled the electrons away from their atoms and then pushed them back.

When the electrons snapped back, they acted like rubber bands released after being stretched, creating purple bursts of light at a higher frequency (and energy) than the laser that kicked them out. Ryan tuned these bursts to resonate with the energies of the cobalt and the manganese within the sample, measuring element-specific spin dynamics and magnetic behaviors within the material that the team could further manipulate.

A Competition of Spin Effects
From their experiment, the researchers found that by tuning the power of the excitation laser and the color (or the photon energy) of their HHG probe, they could determine which spin effects were dominant at different times within their compound. They compared their measurements to a complex computational model called time-dependent density functional theory (TD-DFT). This model predicts how a cloud of electrons in a material will evolve from moment to moment when exposed to various inputs.

Using the TD-DFT framework, Elhanoty found agreement between the model and the experimental data due to three competing spin effects within the Heusler compound. "What he found in the theory was that the spin flips were quite dominant on early timescales, and then the spin transfers became more dominant," explained Ryan. "Then, as time progressed, more de-magnetization effects take over, and the sample de-magnetizes."

The phenomena of spin flips happen within one element in the sample as the spins shift their orientation from up to down and vice versa. In contrast, spin transfers happen within multiple elements, in this case, the cobalt and manganese, as they transfer spins between each other, causing each material to become more or less magnetic as time progresses.

Understanding which effects were dominant at which energy levels and times allowed the researchers to understand better how spins could be manipulated to give materials more powerful magnetic and electronic properties.

"There's this concept of spintronics, which takes the electronics that we currently have, and instead of using only the electron's charge, we also use the electron's spin," elaborated Ryan. "So, spintronics also have a magnetic component. The reason to use spin instead of electronic charge is that it could create devices with less resistance and less thermal heating, making devices faster and more efficient."

From their work with Elhanoty and their other collaborators, the JILA team gained a deeper insight into spin dynamics within Heusler compounds. Ryan said: "It was really rewarding to see such a good agreement with the theory and experiment when it came from this really close and productive collaboration as well." The JILA researchers are hopeful to continue this collaboration in studying other compounds to understand better how light can be used to manipulate spin patterns.

Research Report:Optically controlling the competition between spin flips and intersite spin transfer in a Heusler half-metal on sub-100-fs time scales

Related Links
University of Colorado at Boulder
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Physicists trap electrons in a 3D crystal for the first time
Boston MA (SPX) Nov 09, 2023
Electrons move through a conducting material like commuters at the height of Manhattan rush hour. The charged particles may jostle and bump against each other, but for the most part they're unconcerned with other electrons as they hurtle forward, each with their own energy. But when a material's electrons are trapped together, they can settle into the exact same energy state and start to behave as one. This collective, zombie-like state is what's known in physics as an electronic "flat band," and ... read more

TIME AND SPACE
German govt spending plans at risk as court rules

China emissions could fall in 2024 on renewables jump

EU vows 'substantial' contribution to climate damage fund

China-US climate pledge 'significant moment' pre-COP28

TIME AND SPACE
Researchers aim to make cheaper fuel cells a reality

BMW probes Moroccan cobalt supplier over pollution claims

The secret to longer lasting batteries might be in how soap works, new study says

Urban Heat Island effect extends below ground to water sources

TIME AND SPACE
Winds of change? Bid to revive England's onshore sector

Drones to transport personnel and materials to offshore wind farms

Interior Secretary Haaland announces 15 clean energy projects in the West

Biden approves largest offshore wind project in US history

TIME AND SPACE
UAE inaugurates giant solar plant, two weeks before climate talks

Stable PbS colloidal quantum dot inks enable scalable preparation of infrared solar cells by blade coating

Solar-powered device produces clean water and clean fuel at the same time

Tunnelling recombination layer boosts efficiency of tandem solar cells

TIME AND SPACE
US opens way for nuclear investment in energy-hungry Philippines

Sweden plans huge investment in nuclear power

Kazakhstan to supply uranium to China

Novel technique used to observe molten salt intrusion in nuclear-grade graphite

TIME AND SPACE
Cheap and efficient ethanol catalyst from laser-melted nanoparticles

UK permits 'world-first' flight powered by sustainable fuels

Engineers develop an efficient process to make fuel from carbon dioxide

Unlocking sugar to generate biofuels and bioproducts

TIME AND SPACE
Oil, gas giants could pay climate damage and still profit: research

China fuels increase in global oil demand: IEA

Saudi says climate policy should not 'crush' less powerful

US renews waiver allowing Iraq to buy Iranian gas

TIME AND SPACE
Rights group sounds alarm on UAE's hosting of climate talks

ESA and European Commission to unite on climate action from space

Top French court overturns ban on radical climate group

Scientists blame climate change for 'extreme drought' in Iraq, Iran and Syria

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.